
Curriculum Guide for
Primary Schools

1

ā
ƻȹ

1ȑ

 ȹʖ

 ȹĪ

 ȹ6

 ȹā

32
 34

 36

 38

 41

 43

 45

 49

 52

55

Part One
Introduction

Section 1: Computational Thinking
Logical Reasoning

Algorithms

Decomposition

Abstraction

Patterns and generalisation

Writing software

Section 2: Programming
How do you program a computer?

Programming a floor turtle

Programming movement on screen

Sequence

Selection

Repetition

Variables

Debugging: Can we fix it?

Further reading/resources

Glossary 57

ContentsContents

2

3

Introduction
Computing is a new subject in the English National Curriculum, developed in order
to draw together strands of Computer Science, Information Technology and Digital
Literacy for pupils.

A high-quality computing education ‘equips pupils to use computational thinking and
creativity to understand and change the world’ (Department for Education, 2013). This
guide supports teachers from a broad range of backgrounds who want to understand
the best ways to deliver computing and computational thinking within the context of
their own subject area. It also aims to provide school leadership with a starting point as
they seek to understand the best ways to develop computing and computational skills
across the curriculum.

Figure 1: The complementary strands within computing

Computer Science is the scientific and practical study of computation: what can be
computed, how to compute it, and how computation may be applied to the solution of
problems.

Information Technology is concerned with how computers and telecommunications
equipment work and how they may be applied to the storage, retrieval, transmission and
manipulation of data.

Digital Literacy is the ability to effectively, responsibly, safely and critically navigate,
evaluate and create digital artefacts using a range of digital technologies.

The creation of digital artefacts is integral to much of the learning of computing. Digital
artefacts can take many forms, including digital images, computer programs, spreadsheets,
3D animations and this booklet.

Digital
Literacy

Information
Technology

Computer
Science

5

]ǯœƈ�ǯɿ

�ƨƏȢ�œƏǻșǐɂ±ŷœÁșǻðÁȢƨǯșœƏĜƨǯƈ�ȢœƨƏșŷœÁðƏǻðÙșɂƏÙðǯșȢŉðș
PǐðƏș+ƨɱðǯƏƈðƏȢșCœÁðƏÁðșɱȬǘ

Introduction
Computers play a vital role in our lives. From home to work and from research to
leisure, there’s scarcely a part of modern life untouched by computer technology. Yet,
rather than simply become proficient users of computers, it’s vital that our pupils learn
how such technology works.

Programming, including learning to code, is enjoyable and empowering to learn,
as well as rewarding to teach. Unlike other subjects, however, it is one that few
teachers studied at school or during their teacher training.

This guide is provided for teachers as an introduction to computational thinking and
programming/coding. We hope that the information and support here help you identify
and plan Interactive Design activities that support the Explore element of Using ICT, that
is, to ‘investigate, make predictions and solve problems through interaction with digital
tools’�

6

7

• Logical reasoning: predicting and analysing (see pages 11–13)
• Algorithms: making steps and rules (see pages 14–18)
• Decomposition: breaking things down into parts (see pages 19–22)
• Abstraction: removing unnecessary detail (see page 23)
• Patterns and generalisation: noticing and using similarities (see pages 24–26)
• Evaluation: forming judgements

Section 1
Computational thinking
Understanding problems for computers to provide
solutions
Computers are incredible: they greatly expand our mental capacities. We can work faster,
process more information and share ideas with people across the globe.

There are two steps to solving a problem with a computer:

1. Think about the necessary steps to solve the problem.
2. Use your technical skills to get the computer to work on the problem.

Think, for example, about using a calculator to solve a word problem in Maths. You need to
understand the problem before your calculator can help out with the arithmetic.

Similarly, when making an animation, you have to plan your story and how you’ll shoot it
before your computer hardware and software can help you do the work.

Note: definitions of the main computing terms throughout this guide are provided in the
glossary on page 61.

In both examples, the thinking done before starting work on a computer is called
computational thinking.

Computational thinking is the term for the processes and approaches used when thinking
about problems or systems. It’s about considering a problem in ways that mean a computer
can help to solve it.

This term was popularised by Jeanette Wing, an American computer scientist. In 2006, she
argued that computational thinking should be part of every child’s education along with
reading, writing and numeracy.

The following are processes used in computational thinking:

8

How is computational thinking used?

While computational thinking describes modes of thought that are typical of computer
scientists and software developers, many others think this way too – and not just when
using computers. The thinking processes and approaches that help with computing are
helpful in many other contexts.

For example, the ways in which software engineers go about creating a new social
networking platform are not really so different to how you and your colleagues might work
as a team to put on a play or organise a trip.

In each case, you must:

• work out the rules or the steps to take for getting things done;

• reflect on the ways in which previous projects were done might help;

• divide the big and complex problem into smaller, more manageable, problems; and

• manage the task’s complexity, typically, by focusing on the key details.

LOGIC
predicting

& analysing

ALGORITHMS
making steps

& rules

DECOMPOSITION
breaking down

into parts

PATTERNS
spotting &

using similarities

THE
COMPUTATIONAL

THINKER:
CONCEPTS & APPROACHES

ABSTRACTION
removing

unnecessary detail

EVALUATION
making judgement

CONCEPTS APPROACHES

TINKERING
experimenting

& playing

CREATING
designing &

making

DEBUGGING
finding &

fixing errors

PERSEVERING
keeping going

COLLABORATING
working together

9

How is computational thinking used in a school curriculum?

Logical reasoning, algorithms, decomposition, abstraction and generalisation – all these
aspects of computational thinking can help with problem solving across the school
curriculum and beyond. As pupils learn these thinking skills in the context of computing
work, they usually grow more proficient in applying them to other areas of study.
Your pupils already use computational thinking in many ways and across different
curriculum subjects.

Consider these examples.

• When pupils write stories for Language and Literacy, you encourage them to plan first,
think about the main narrative events, the settings and the characters.

• In the Arts, you might ask pupils to think about what they are going to create, what
steps are needed to create this and how they will work through them. The complex
creative process is likely to be broken down into more manageable planned phases.

• When working on a problem in Maths, pupils identify the key information first, before
they solve it.

Where does computational thinking fit in?

jŉðșK�ȢœƨƏ�ŷș�ɂǯǯœÁɂŷɂƈșŉ�ǻșǐǯœƨǯœȢœǻðÙșȢŉœƏűœƏĲș�ƏÙșǐǯƨ±ŷðƈőǻƨŷɱœƏĲșǻœƏÁðșœȢǻș
œƏȢǯƨÙɂÁȢœƨƏșœƏșȹʖƻĪǘș

�Ȣș Ȣŉðș ŉð�ǯȢș ƨĜș Ȣŉðș ÁɂǯǯœÁɂŷɂƈș ŷœðǻș �Əș ðɽǐŷœÁœȢș ðƈǐŉ�ǻœǻș ƨƏș Ȣŉðș ÙðɱðŷƨǐƈðƏȢș
ƨĜș ǻűœŷŷǻș �ƏÙș Á�ǐ�±œŷœȢœðǻș Ĝƨǯș ŷœĜðŷƨƏĲș ŷð�ǯƏœƏĲș �ƏÙș Ĝƨǯș ÁƨƏȢǯœ±ɂȢœƏĲș
ðĜĜðÁȢœɱðŷɿș ȢƨșǻƨÁœðȢɿǘș jŉðǻðș ɳŉƨŷðș ÁɂǯǯœÁɂŷɂƈș ǻűœŷŷǻș �ƏÙș Á�ǐ�±œŷœȢœðǻș ÁƨƏǻœǻȢș
ƨĜș Ȣŉðș �ǯƨǻǻő�ɂǯǯœÁɂŷ�ǯș cűœŷŷǻș ǓœƏÁŷɂÙœƏĲș sǻœƏĲș 3�jǕș �ƏÙș jŉœƏűœƏĲș cűœŷŷǻș
�ƏÙș]ðǯǻƨƏ�ŷș��ǐ�±œŷœȢœðǻǘ

�ƨƈǐɂȢ�ȢœƨƏ�ŷșȢŉœƏűœƏĲÖșŉƨɳðɱðǯÖșǻŉƨɂŷÙƏʼȢș±ðșǻððƏș�ǻș�Əș�ŷȢðǯƏ�ȢœɱðșĜƨǯș
ǫǐǯƨ±ŷðƈőǻƨŷɱœƏĲșǻűœŷŷǻʼǘș�ŉœŷðșœȢșÙƨðǻșŉðŷǐșȢƨșǻƨŷɱðșǐǯƨ±ŷðƈǻș�ƏÙșœȢșÙƨðǻșŉ�ɱðș
ɳœÙðș�ǐǐŷœÁ�ȢœƨƏǻș�ÁǯƨǻǻșƨȢŉðǯșÙœǻÁœǐŷœƏðǻÖșÁƨƈǐɂȢ�ȢœƨƏ�ŷșȢŉœƏűœƏĲșœǻșƈƨǻȢș
ðɱœÙðƏȢș�ƏÙșǐǯƨ±�±ŷɿșƈƨǻȢșðĜĜðÁȢœɱðŷɿșŷð�ǯƏðÙÖșȢŉǯƨɂĲŉșȢŉðșǻɿǻȢðƈ�ȢœÁÖșÁǯð�Ȣœɱðș
ǐǯƨÁðǻǻðǻșƨĜșɳǯœȢœƏĲșÁƨÙðǘșjŉœǻșœǻșÙœǻÁɂǻǻðÙșœƏșȢŉðșǻðÁƨƏÙșǻðÁȢœƨƏșƨĜșȢŉœǻșĲɂœÙðǘ

�ŉœŷðșǐǯƨĲǯ�ƈƈœƏĲșǓǻððșǐ�ĲðșȬƻǕșœǻș�ƏșœƈǐƨǯȢ�ƏȢșǐ�ǯȢșƨĜșÁƨƈǐɂȢœƏĲÖșœȢșɳƨɂŷÙș±ðș
ɳǯƨƏĲșȢƨșǻððșȢŉœǻș�ǻș�ƏșðƏÙșœƏșœȢǻðŷĜǘș_�ȢŉðǯÖșœȢʼǻșȢŉǯƨɂĲŉșȢŉðșǐǯ�ÁȢœÁ�ŷșðɽǐðǯœðƏÁðș
ƨĜșǐǯƨĲǯ�ƈƈœƏĲșȢŉ�ȢșȢŉðșœƏǻœĲŉȢǻșƨĜșÁƨƈǐɂȢ�ȢœƨƏ�ŷșȢŉœƏűœƏĲșÁ�Əș±ðǻȢș±ðș
ÙðɱðŷƨǐðÙǘ

Computational sandwiches
Pupils make a recipe for a sandwich; they consider each step in the process carefully.
Teach them that a step-by-step sequence of instructions is called an algorithm. Invite
them to share recipes and identify patterns in them – this is called generalisation. Read
a range of recipes. Discuss the layers of simplification (abstraction) even in simple
recipes, such as those for pizza.

Classroom activities to develop
computational thinking

Extension work
Challenge able or older pupils, either working to individually or collaboratively, to carry
out more complex projects. Examples include researching and writing up aspects of a
curriculum topic such as the Viking invasion covered in History, or putting together a
class play or a school assembly. In each case, ask pupils to note each step needed for
the task and to identify any elements they had to leave out to make the subject matter
meet the brief.

1

2

10

11

Logical reasoning
Explain why something happens

Set up two computers in the same way, give them the same instructions (the program) and
the same input, and you can be sure they’ll produce the same output.

Computers don’t invent things on their own initiative, or work differently because of personal
feelings. This means that they are predictable. Because of this we can use logical reasoning to
predict exactly what a program or computer system will do.

Children learn this quickly. Watching others use computers and experimenting for themselves
allow even the very young to understand how technology works. A child soon recognizes that
clicking a button brings up a list of different games to play, or that tapping or stroking the
screen produce predictable responses.

Using existing knowledge of a system to predict future behaviour is an important part of
logical reasoning. Central to logical reasoning is the ability to explain why something is the
way it is. And it’s a way to understand why something isn’t the way you expected it to be.

Using logical reasoning

Logic is crucial to the operation of any computer. Deep inside its central processing unit
(CPU), every operation the computer performs is reduced to logical operations carried out
using electrical signals.

Because everything a computer does is controlled by logic, we can use logic to understand
program behaviour.

Logical reasoning is used continuously by software engineers. They use their specialist
understanding of how computer hardware, the relevant operating system (such as
Windows, OS X) and the programming language they’re using work so that they can
develop new code that will work in the way they want. They also depend on logical
reasoning when they test new software and when they seek out and fix the
‘bugs’ (mistakes) in their thinking (see page 52) or their coding when such tests fail.

12

Logical reasoning across the curriculum

Children already use logical reasoning across the wider curriculum in many ways.

• In Language and Literacy, pupils predict what a character will do next in a novel, or
explain the character’s actions in the story so far.

• In Science and Technology, pupils explain how conclusions have been drawn from the
results of their experiments.

• In History, pupils discuss the logical connections between cause and effect; they
understand that historical knowledge is derived from various sources.

Where does logical reasoning fit into computing activities?

Younger pupils can use logical reasoning to predict the behaviour of simple programs. This
can include programs they write themselves, for example those made with a floor turtle,
or simple movement commands on screen in a program like Scratch. Other uses of logical
reasoning include predicting what happens when playing a computer game, or when
using a painting program.

Older pupils can write simple algorithms and code using logical reasoning. They
can identify and fix mistakes in their own code or in existing code.

Floor turtles
The pupils predict where the turtle device will end up when the go button is pressed.
Then they explain why they have made this prediction. Being able to explain thinking is
what logical reasoning is all about.

Classroom activities to illustrate
logical reasoning

Debugging
Logical reasoning is crucial in the process of debugging (identifying and correcting errors
in coding). Pupils could test programs made on Scratch or Scratch Jnr to learn this. (See
https://scratch.mit.edu/ or http://www.scratchjr.org/) The pupils look at one another’s
Scratch programs and search for bugs. Encourage them to test the programs to see if they
can work out exactly which part of the code is causing a problem. If pupils’ programs
don’t work, ask them to talk through their code, explaining it to a classmate. The action
of explaining the process is the important part, so it could even be explained to an
inanimate object, such as a rubber duck. This is known as rubber duck debugging.

1

2

Cracking the Code
Print out some of the rules and regulations that apply to your school, for example its
Computer Acceptable Use Policy. Ask pupils to think carefully about some specific rules.
By using logical reasoning, the pupils have to explain why the rules are as they are.

3

Reasons for Rules
Give pupils a program that you have made, or one you have downloaded from the Scratch
website. The pupils must work backwards from the code and work out what it will do.

4

Games and Logic
Many games draw on the players’ skills in making logical predictions. Why not use
some to help build their skills? First set up noughts and crosses for the pupils to play
using pencil and paper. During the game, each pupil should predict their opponent’s
next move. After this, set up some computer games – Minesweeper, Angry Birds and
SimCity all work well. At certain points during gaming, pupils must pause and predict
what will happen when they make their next move. A great game to allow pupils to
practise their skills of logical reasoning is chess. You might want to start a chess club if
there isn’t one already in your school.

5

13

Google’s search
algorithm is said to be
a more closely guarded
secret than the recipe
for Coca-Cola.

14

15

Algorithms
A sequence of instructions, or a set of rules for achieving
a result or solving a problem, is known as an algorithm.
For example, you probably know the easiest way to get home from school; this might
be turn left, drive for five miles, turn right. This might be considered an algorithm – it’s
a sequence of instructions for achieving a result: to get you to your chosen destination
easily. There are plenty of algorithms that will accomplish the same goal (other routes);
in this case, there are even algorithms (such as in those programmed into your satnav) for
determining the shortest or quickest route.

Algorithms in the real world

Search engines use algorithms to organise search results, with the aim of putting the result
you’re looking at the top of the page. Google’s search algorithm is said to be a more closely
guarded secret than the recipe for Coca-Cola.

Online retailers use different types of algorithms. One type works on the basis of other
people’s purchases. Once you buy an item, the retailer suggests other purchases based on
what other people, who bought the same item as you, went on to buy. A different algorithm
can be used to drop the price of a new or untried product every few days or every few hours
until the product is purchased by someone; after this, the price goes up.

Credit approvals, store cards, job and dating matches and more are all run on similar
principles. The most complicated algorithms are found in science, where they are used to
design new drugs or model the climate.

16

Algorithms across the curriculum

Developing pupils’ understanding of algorithms could extend throughout the curriculum.
Consider the following examples of ways in which you and your pupils might be using
them already.

• A recipe can be considered an algorithm.

• A lesson plan is an algorithm for the sequence of events, activities and intended
outcomes in a lesson.

• For many activities there is a sequence of steps or rules for pupils to follow, for example
when going for lunch or preparing for a PE lesson.

• In Language and Literacy, we might consider the rules for producing writing in a
particular form and then for proofreading and redrafting as a type of algorithm.

• In Science, the method of an experiment could be considered an algorithm.

• Your approach to teaching mental arithmetic might be to implement a simple algorithm.

An example of such an algorithm is the following.

• repeat ten times:

– ask a question;

– wait for a response; and

– provide feedback on whether the response was right or wrong.

�ŉðǯðșÙƨș�ŷĲƨǯœȢŉƈǻșʢȢșɳœȢŉșȢŉðșK�ȢœƨƏ�ŷș�ɂǯǯœÁɂŷɂƈ

The curriculum requirements for �ƨƈǐɂȢœƏĲșǻðȢșƨɂȢșȢŉ�ȢșǐɂǐœŷǻșǻŉƨɂŷÙșɂƏÙðǯǻȢ�ƏÙș
ɳŉ�Ȣș�ŷĲƨǯœȢŉƈǻș�ǯðÖșŉƨɳșȢŉðɿș�ǯðșœƈǐŷðƈðƏȢðÙș�ǻșǐǯƨĲǯ�ƈǻșƨƏșÙœĲœȢ�ŷșÙðɱœÁðǻǘș�ƏÙș
Ȣŉ�ȢșǐǯƨĲǯ�ƈǻșðɽðÁɂȢðș±ɿșĜƨŷŷƨɳœƏĲșǐǯðÁœǻðș�ƏÙșɂƏ�ƈ±œĲɂƨɂǻșœƏǻȢǯɂÁȢœƨƏǻ

There can be many algorithms to solve the same problem, and each of these can be
implemented using different programming languages and on different computer
systems. For example, Key Stage 1 pupils might usefully compare how they draw a
square with a floor turtle and how they would do this on screen in cÁǯ�ȢÁŉǘ

Scratch Jnr

17

Key Stage 2 builds on thisș�ƏÙșpupils can designșprograms with particular goals in mind.
Such work draws on their ability to think algorithmically. Pupils also use logical reasoning
to explain algorithms and to detect and correct errors in them.

To practise this, encourage pupils to carry out the steps for an algorithm. They must follow
the instructions themselves rather than write these as code for a computer. You are likely
to see errors and inconsistencies early in the process!

While programming languages like Scratch can minimise the need for a thorough planning
stage when writing a program, it’s good practice for pupils to prepare thoroughly. They
should ǐŷ�ƏÖșÙðǻœĲƏșwrite down the algorithm for their program. This doesn’t have to be
lengthy writing: they can use rough jottings, a storyboard, pseudocode or a flow chart.
(Pseudocode, as seen in the first illustration below, is a written description of how a
program will operate; the second illustration, below, is an example of a flow chart.) This
type of writing – in whatever form you choose – makes it easier for pupils to receive
feedback on their algorithms before implementing these as code on their computers.
Feedback can come from other pupils as well as from you.

Repeat 10 times:
Ask a maths question

If the answer is right then:
Say ‘well done!’
Else:
Say ‘think again!’

An example of pseudocode

ASK A QUESTION

PUPIL RESPONDS

SAY ‘THAT’S RIGHT’

SAY ‘THAT’S WRONG’

An example of a flow chart

YES

NO
IS THE

ANSWER
CORRECT?

START

Discussion
Discuss what makes one algorithm better than another with your pupils. In early
programming lessons, pupils should realise that a Bee-Bot program with fewer steps
than another to get to the same place is faster.

Classroom activities to
illustrate algorithms

Guess my number
Play ‘Guess my number’ to demonstrate the point. Tell the pupils that you have picked a
number between 1 and 100 which they have to guess. They can ask questions about the
number, but you can only answer ‘Yes’ or ‘No’. Each pupil may ask only one question.

• For the first turn, ask the pupils to guess numbers at random.
• Next, using a new number, ask the pupils to guess the number sequentially, beginning

with number one. For example, ‘Is the number one?’ and so on. Explain that this is called
a linear search. Give the class as many turns as they need to guess the number.

• Finally, using a new number, explain the term binary search. Explain that the pupils
already know the number is less than 100, so suggest that they ask, ‘Is it less than 50?’
then, ‘Is it less than 25?’ or ‘Is it less than 75?’ depending on the answer. The pupils
should keep halving the section they are searching in until they find the number.

• After the game, discuss which approach found the number quickest. When they are
familiar with the binary search method, replay the game using a number between 1
and 1000.

1

2

Sorting weights
The pupils sort a set of unknown weights in order of weight using a simple pan balance.
They think carefully about the algorithm they’re following to do this. Then they think of a
quicker way to accomplish the same task. A demonstration of this may be found at
http://csunplugged.org/sorting-algorithms

3

4 Follow the rules
Explain that not all algorithms are made up of sequences of instructions. Some are
based on rules. Write a number sequence on the board to introduce this idea, for
example 3, 6, 9, 12 or 2, 4, 8, 16. The pupils must work out the rule for the sequence
(adding 3, or doubling the number); then they must predict the next number. Explain
the following: the rule for the sequence is the algorithm; the process by which they
worked it out was logical reasoning.

18

19

Decomposition
Break it to make it

Decomposition is the process of breaking down a problem into smaller manageable parts.
This process helps us solve complex problems and manage large projects.

It has many advantages. The process of problem-solving becomes manageable. Large
problems are daunting, but a set of smaller, related tasks is much easier to work with.
Decomposition also means that a team can work together on the overall task, with each
member bringing their own insights, experience and skills.

Decomposition in the real world

Breaking down problems into their smaller parts is not unique to computing. Decomposition
is standard practice in engineering, design and project management. Software development
is a complex process, so being able to split a large project into its component parts is
essential. Consider the different elements that are combined to produce a complex program
like PowerPoint. Computers themselves are similarly complex. For example, a laptop
or a smartphone is made up of many components. These components are often made
independently by specialist manufacturers, then assembled to form the finished product with
everything working under the control of the operating system and applications.

20

How can we use decomposition in school?

You’ll have used decomposition to tackle big projects at school already. Consider the
examples that follow.

Delivering your school’s curriculum is a good example. Typically a curriculum would be
decomposed as years and areas of learning, then further into terms, units of work and
individual lessons or activities. Notice how the project is undertaken by a team working
together (your colleagues), and how important it is for the parts to integrate harmoniously.
Organising events, such as a school play, a school trip or a school fair are all examples of
projects in which decomposition is used.

Decomposition applied to a school trip

TRIP TO FARM

CONSENT LETTERS

STAFFING

BOOK COACH

CHECK WEATHER

RESOURCE

21

Decomposition used across the curriculum

It’s likely that you and your pupils already use decomposition in many different ways
across the curriculum. Here are just some examples.

• Labelling diagrams in Science or Geography to show the different parts of a plant, or the
different nations which make up Europe.

• Planning the different parts of a story in English.

• Breaking down a problem in Maths.

• Planning a research project for any subject, or collaborating on a group presentation.
Computers can be beneficial with this sort of collaborative group work, for example
collaboration tools are available in Office 365 and other cloud-based software.

�ŉðǯðșÙƨðǻșÙðÁƨƈǐƨǻœȢœƨƏșʢȢșœƏșɳœȢŉșȢŉðș�ɂǯǯœÁɂŷɂƈǢ

As pupils plan programs to solve problems in a digital environment, encourage them to use
decomposition by working out what the different parts of the program or system must do
and thinking about how these are interrelated.

For example, a simple educational game needs:

• some way of generating questions;

• a way to check if the answer is right;

• some mechanism for recording progress such as a score; and

• some sort of user interface, which in turn might include graphics, animation,
interactivity and sound effects.

Plan opportunities for pupils to work collaboratively on a software development project or
on other projects in computing.

This could involve media work such as:

• animations or videos;

• shared online content such as a wiki; or

• a challenging programming project such as making a computer game or even a mobile
phone app.

Plan a programming project
Plan a large-scale programming project, such as making a computer game in Scratch,
through decomposition. Even for a relatively simple game the project would typically
be decomposed as follows: planning, design, algorithms, coding, animation, graphics,
sound, debugging and sharing. A project like this would lend itself to a collaborative,
team-based approach, with development planned over a number of weeks.

Classroom activities
for decomposition

Decompose a desktop
Remove the casing from an old desktop computer to reveal how computers are
made from systems of smaller components connected together. It might be possible
to disassemble some components further, though it could be easier to examine
illustrations of their internal architecture.

1

2

Collaborative online project
Set up a collaborative project online. This might take the form of a multi-page wiki
site. Pupils could, for example, take the broad topic of e-safety, decompose this into
smaller parts and then work collaboratively to develop pages for their wiki, exploring
each individual topic. The writing process for these pages might be decomposed further
through planning, research, drafting, reviewing and publishing phases.

3

22

23

Abstraction
Abstraction means ignoring or hiding irrelevant details
of a problem so you can focus on dealing with the
important part.
For the American computer scientist, Jeanette Wing, who is credited with coining the term,
abstraction lies at the heart of computational thinking:

‘The abstraction process – deciding what details we need to highlight and what details we
can ignore – underlies computational thinking.’ Jeanette M Wing (2008) ‘Computational
thinking and thinking about computing’. http://rsta.royalsocietypublishing.org/content/
roypta/366/1881/3717.full.pdf

When coders write code to carry out a task, their method may combine other methods or
functions built into the programming language but they don’t need to know how these
functions were created.

While computer programmers find abstraction very useful, it’s not something you need to
explain to primary pupils when they’re carrying out coding activities. It is, though, a powerful
way of thinking about problems – so you may wish to introduce the concept in a simple way
and not necessarily through computing lessons.

For example, in Maths, solving word problems often involves identifying the important
information and setting out how to represent the problem in the more abstract language of
arithmetic, for example by using the plus, minus and equals terms and symbols.

If we identify
patterns, we can
predict outcomes,
make rules and solve
general problems.

24

25

Patterns and
generalisation
Making life easier

In computing, searching for a general approach to a class of problems is known as
generalisation. If we identify patterns, we can predict outcomes, make rules and solve
general problems.

Consider the following example. Pupils are learning about area by working out the area
of a rectangle which is drawn on a grid of centimetre squares. While they could count the
centimetre squares on the grid, a better method is to multiply the length by the width.
Not only is this method faster, it also works for all rectangles, including those that are very
small and those that are very big.

Of course, it does take time for the pupils to grasp this formula, but when they know it, this
formula can be applied quickly and easily to similar problems that they face in the future.
Time spent now is time saved later!

How are patterns and generalisation used in the primary
curriculum?

Pupils have probably encountered the idea of generalising patterns in many areas of the
primary curriculum already.

• Think about how they respond to nursery rhymes and stories. These contain repeated
phrases and structures. Many children grow familiar with the repeated rhymes, rhythms
and phrases of nursery rhymes even before they go to primary school. Later, they
respond to the familiar narrative structures in traditional stories, such as in fairy tales.

• Songs and other pieces of music often contain patterns and melodies that children
recognise and respond to.

• Pupils often work on simple maths problems that involve recognizing patterns and
deducing generalised results.

• Pupils recognize patterns in spelling. These are often taught as rules, and exceptions to
these general rules are also taught.

Number sequences
In computing lessons, encourage pupils to use a simple programming language such
as Scratch to experiment with number patterns and sequences. Challenge them to work
out a general program which can generate any linear number sequence.

Classroom activities for
patterns and generalisation

Simpler, quicker, better
Teach pupils to find simpler or quicker ways to solve a problem or achieve a result.
Invite them to create geometric patterns, working up to more complex ‘crystal flowers’
using turtle graphics commands in languages like Scratch, Logo or TouchDevelop. Some
of the CCEA Using ICT tasks for Interactive Design could help with this. Emphasise how
using repeating blocks of code is much more efficient than writing each command
separately. Ask pupils to experiment with how changing one or two numbers in their
program produces different shapes.

1

2

Graphic patterns
Teach pupils to use graphics software to create tessellating patterns to cover the screen.
As they work on their patterns, ask the pupils to find faster ways to complete the
pattern – copying and pasting groups of individual shapes is one easy way.

3

Sequencing in music
In Music lessons, teach pupils to use simple sequencing software in which patterns
of beats are repeated, then allow them to use this to create rhythmic and effective
compositions.

4

26

27

Writing software
In addition to the processes of computational thinking
outlined above, there are numerous approaches that
characterise computational thinking. It’s worth helping
pupils to develop such approaches to their work; if they do,
they’ll be much more successful in putting their thoughts
into action.

Tinkering/Experimenting

Computer scientists love to play around with technology: to experiment and to explore.
Aspects of learning a new programming language or exploring a new system are like
the purposeful play that schools often encourage as an effective approach to learning in
Foundation Stage classrooms.

Using open source is a great way to play with software and writing code. It’s easy to take
code written by someone else, to examine how it’s constructed and then adapt it to your own
purpose. This sharing-based approach is encouraged by programs such as Scratch. In fact, its
name comes from the term ‘scratching’, which, in computing, refers to the process of reusing
code – code that can be shared and reworked easily for other purposes and situations.

Rather than explain exactly how a new piece of software works, encourage pupils to play
with it, sharing what they discover with each other. Also, set up opportunities for them to
use code developed by others – by you, by their peers or from online sources. Use this code
as the starting point for their own programming.

28

Creating

Creativity is at the heart of the programming process. Foster a spirit of creativity in your
pupils by seeking out tasks that offer scope for their use of imagination and creativity,
rather than simply have them program to find the right answer.

Teach them to reflect on the work they produce, thinking of the strengths and areas for
development in their own and others’ projects. It is now common practice for software
developers to continually seek ways in which they can improve their software. Working with
digital music, images, animation, virtual environments and 3D printing are some ways to
foreground artistic creativity.

Debugging

A normal part of programming is writing code that initially contains flaws. These flaws,
errors or faults are known as bugs, and a big part of writing code is their removal, which is
known as debugging.

It’s important for you to teach your pupils to think as programmers. Accordingly, they
should take responsibility for thinking through their algorithms and code. They should
also find and fix their mistakes. There are many areas of the curriculum in which similar
processes are used. For example, in Language and Literacy pupils often draft, proofread and
redraft their writing and, in Maths, pupils often check through their working.

Just as in Language and Literacy the teacher might ask pupils to proofread each other’s
writing, ask pupils to debug each other’s code. Identifying and correcting mistakes
independently is recognised as an important method of learning; debugging code –
either a pupil working on their own code, or working on that of a peer – is an excellent
way of doing this.

As the teacher, it’s important for you to notice the bugs that creep in to your pupils’ coding.
Often these reveal misunderstanding that you can address directly, either with one or two
pupils or with the group as a whole.

29

Persevering

It’s worth reminding ourselves that computer programming is difficult. Yet that difficulty
is part of its attraction. Overcoming the challenges along the way to produce code that
works effectively brings the programmer tremendous satisfaction. A big part of overcoming
those challenges goes beyond technical skills, such as knowing the right algorithms and
understanding the language you’re working in. A programmer must be willing and able
to persevere with a task that’s often difficult and sometimes frustrating. Qualities such as
perseverance and resilience are vital.

Developing such qualities brings benefits in other areas of the curriculum too. As the
work of the psychologist Carol Dweck shows, love of learning and resilience are qualities
associated with virtually all high achievers. It is important for pupils to develop what Dweck
terms a ‘growth mindset’, that is to believe that their abilities can grow through hard work
and dedication. Meeting the challenges of programming and showing resilience through
rewriting code and debugging are excellent ways to do just that.

Rather than allowing them to give up or to ask for your help when they encounter problems
in their programming, teach pupils to adopt strategies for dealing with those problems.
Typical strategies include identifying the exact nature of the problem, seeking a solution by
using a search engine such as KidRex or Swiggle (or by using Bing or Google with the safe
search mode locked), or by asking a classmate for help.

Collaborating

Software is developed collaboratively. Teams of programmers and others work together on a
shared project. Set up activities that replicate this experience for your pupils. Group work is
common in areas of the primary school curriculum; computing lessons – whether discrete,
or as part of delivering another subject – should be no different.

‘Pair programming’ is one useful approach. Two programmers share a screen and keyboard
as they work together to write software. One programmer usually adopts the role of driver
(taking charge of the detail of the programming), whilst the other adopts the role of the
navigator (taking charge of the ‘big picture’). The two programmers swap roles regularly, so
that each understands both the detail and the big picture.

Larger group work develops additional skills, with each pupil contributing some of their own
particular talents or interests to a shared project. It’s important, however, that all pupils
develop their understanding of each part of the process. Do make sure you plan some
sharing of roles or peer-tutoring throughout your activities.

30

What is programming?

A program is a set of instructions for a computer, which is written in a language that it can
understand. Programming is simply the action of designing and writing such instructions.
At its simplest level, programming can be a process such as making a toy robot trace a
square. At its most complex, it can be writing code to predict the weather.

There are two steps to writing a program:

1) Analyse the problem or system and devise a solution.
This process uses logical reasoning, decomposition, abstraction and generalisation to
design algorithms to solve the problem or model the system. (See Section 1 for further
details of these processes.)

2) Express these ideas in a programming language.
This is called coding. The set of instructions that make up the program is called code.

People study computer science to learn how to code. There’s a wonderful sense of
satisfaction when you achieve the goal of seeing a computer do just what you’ve asked
because you wrote a precise set of instructions. Programming allows you to test ideas and
have immediate feedback on whether something works or not.

Programming in schools

While it is possible to teach computational thinking without coding and vice versa, it’s
better to teach them together. Teaching computational thinking without allowing pupils
to test their ideas by writing code on a computer is like teaching only scientific theories
and principles without doing any experiments. Similarly, teaching programming without
teaching the processes of computational thinking is like only doing experiments in science
without teaching the principles that they exemplify.

It can be useful for pupils to analyse problems using terms such as algorithms and
decomposition, and have repeated practical experience of writing computer programs in
order to solve problems.

Programming activities for Key Stage 1 pupils could include looking at how simple
algorithms are implemented as programs on digital devices. The phrase ‘digital devices’
includes tablets, laptop computers and programmable toys such as a Bee-Bot. It can be
useful for pupils to be able to look at their algorithms, in whatever way they’ve recorded
these, and their code side by side.

31

Section 2
Programming

32

Using arrow cards to record algorithms for programmable toys.

Pupils also should have the opportunity to create and debug their own programs as well as
to predict what a program will do.

In Key Stage 2, pupils can move on to learning how to design and write programs that
accomplish specific goals such as making a game in Scratch in which sprites interact. Other
programs can include controlling or simulating physical systems, for example making and
programming a robot. They can be taught to use sequence, selection and repetition in their
programs as well as variables to store data (for example, using a counter to keep score in a
Scratch game).

Pupils can also learn to use logical reasoning to detect and fix the errors in their programs.

Here are some ideas for extended programming projects:

Key Stage 1

• Solve a maze using a floor/screen turtle.

• Create a simple animation in Scratch.

Key Stage 2

• Create a question and answer maths game.

• Create more complex computer games and animations in which there are more
sophisticated interactions between sprites. For example, in Scratch, using the ‘broadcast’
and ‘receive’ commands to make characters in an animation talk to each other.

© TSS Group Ltd

33

How do you program
a computer?
Programming a computer means writing code. The
code is the set of instructions written in a language the
computer can understand.
But don’t despair: not all computer languages are highly complex and specialised. In fact,
those that we teach and use at primary school are a halfway house. They’re written in a
computer language that is expressed in a version of English that we can understand, which
then gets translated by the computer into a more pure computer language called machine
code. Machine code is a set of instructions that can be run directly on the silicon chips of
the machine. It is a language that the computer can respond to directly.

Programs are made up of precise instructions. When writing a line of code, there’s no room
for ambiguity or debate over meaning. We can only write code using the clearly defined
vocabulary and grammar of the programming language, but typically these are words
taken from English, so code is something that people can write and understand, but the
computer can also follow.

Programming languages for primary school

There are hundreds of computer languages. While most of these are too complex for
those beginning to learn programming, there are many that can be used effectively in the
primary classroom. Many of these are also well resourced and some are backed by the
support of online communities. Choose a language that you know already, or one that
you’ll find easy to learn.

When choosing a programming language, consider the following:

• Not all languages run on all computer systems.

• Select a language that suits your pupils. (There are computer languages that are readily
accessible to primary pupils, such as Scratch. In most cases these have been written for
pupils, or at least adapted to make them easier to learn.)

• Consider the learning resources that are available. Why not pick one that is supported by
a good range? It’s even better still if it has online support communities available, both
for teachers and for learners.

• It is beneficial for the pupils to be able to continue working in the chosen language
on their home computer. It’s even better if they can continue work easily on the same
project via the internet.

• Some say that some languages are better at fostering good programming habits than
others. It’s probably better to focus on the teaching than the language in that regard.
At this early stage, good teaching – where computational thinking is taught alongside
coding – will help to prevent pupils from developing bad coding habits.

34

The right language for the right Key Stage

The table below suggests which programming languages are suitable at which stage of
primary school.

Key Stage Language Type Language

Foundation Stage Device-specific
Bee-Bot

]ǯƨĲǯ�ƈƈ�±ŷðșȢƨɿǻ

KS1 Limited instruction
Scratch Jr

KS2

Game programming Kodu

Block-based Scratch, Hopscotch

Text-based
œȢǻƨɽ

Scratch

0jJCȘ�cc

35

Programming a
floor turtle

Turns the Bee-Bot
90° anti-clockwise

Moves the Bee-Bot
forward through its
own body length

Allows stored
program to run

Turns the Bee-
Bot 90° clockwise

Clears the
Bee-Bot memory

Moves the Bee-Bot
backwards through
its own body length

The Bee-Bot functions

Rather than using computers, programming work at
Foundation Stage and Key Stage 1 is more likely to use
simple programmable toys.
Pupils learn the techniques of programming more quickly and easily when they use
a simple language and a simple interface. Using a floor turtle, such as a Bee-Bot or a
Roamer-Too, makes it easy for them to plan and check programs. Since these devices work
on the floor, pupils can, quite literally, put themselves in the place of the device they’re
programming.

The programming language used by the Bee-Bot has five commands: forward, back, turn
left, turn right and pause. All you need to do to program one is simply press the buttons in
the desired order to build a sequence of commands, with new commands being added to
the end of the sequence.

© TSS Group Ltd

36

Pupils can enjoy a range of fun activities using a Bee-Bot, both for computing lessons
and for work across the curriculum. Foundation pupils are likely to start programming the
device one instruction at a time, but older children often become skilled at writing
longer sequences.

When pupils are ready to move from programming floor turtles to programming on
screen, why not use an on-screen simulation of a Bee-Bot? You can make, or adapt, one
ɂǻœƏĲșcÁǯ�ȢÁŉǘ

Experiments with a turtle
Let very young pupils experiment with a floor turtle. As they play, encourage them
to develop their understanding of the link between pressing buttons and running
their program.

Simple programming
The pupils plan a sequence of instructions to achieve a specific goal, such as moving
the floor turtle from one ‘flower’ to another on an illustrated grid. Then the pupils must
demonstrate logical reasoning by predicting what will happen when their program runs,
and explain their thinking.

1

2

More complex challenges
For more complex challenges, provide pupils with the code for a floor turtle’s route from
one place to another, including an error in the code. Ask the pupils to work out where
the bug is in the code and then fix this, before testing out their code on the floor turtle.

3

Classroom activities

37

Programming
movement on screen
Graphical programming toolkits make learning to code
easy. In most of these, programs are developed by
dragging or selecting blocks or icons which represent
particular instructions in the programming language.
These can normally only fit together in ways that make sense, so the potential for errors in
spelling or punctuation is minimised. In this way, the programmer focuses on the ideas of
their algorithm and the intended outcome, rather than becoming bogged down in the words
and the grammar of the programming language. Programming in this way usually means
that pupils can become more active learners, who require much less support from their
teacher.

Scratch

Devised by the prestigious Massachusetts Institute of Technology (MIT), Scratch is a versatile
and free programming language that helps children learn programming. It has two versions:
Scratch, which is aimed at students from the age of eight; and Scratch Jnr, which is aimed
at children between the ages of five and seven. The programmer creates their own graphical
objects, including the stage background where the action of the Scratch program takes place
and moving objects, known as sprites, such as the characters in an animated story or a game.

Programming with Scratch

Each object can have one or more scripts, built using the blocks of the Scratch language (see
the illustration above). To program an object in Scratch, drag the block you want from the
different palettes then snap it into place within the other blocks on the screen. This forms a
script. Scripts can run in parallel, or be set in motion by particular events.

38

Numerous other projects use Scratch as a starting point for their own platforms. For
example, ScratchJr can be used in the form of an iPad app designed for young programmers
at Foundation Stage and the start of Key Stage 1. The same sort of building block interface
is used by Snap!, a language developed by the University of California at Berkeley, which
allows even more complex programming ideas to be explored.

Scratch programmers can access a vibrant online community to download and share
their projects globally. With such a network of support, pupils can learn much more
about programming than what is required at primary school. Similarly, teachers can take
advantage of help, support and high quality resources from Scratch’s educator community.
Scratch is available as both a web-based editor or as a standalone desktop application. You
can move files between online and offline versions easily.

Kodu

Kodu was developed by Microsoft. It is visual programming language for creating simple,
interactive 3D games. Each object in the Kodu game world can have its own program. Kodu
programs are ‘event driven’. This means that are made up of sets of commands set up in a
‘when [this happens], do [that]’ format. Actions are triggered when things happen, such as a
key being pressed, one object hitting another or the score reaching a certain level.

As with Scratch, programmers can share their programs – in this case, games – with
others in the Kodu community. This facilitates informal and independent learning. Again,
like Scratch, pupils may download and modify games created by others. This can be an
effective way to learn programming, which can encourage pupils to develop games with a
strong sense of audience and purpose.

Scratch animations
Pupils create simple scripted animation using Scratch. Each animation could have at
least two programmed characters, who help to act out a story. Designing the algorithm
for this sort of program is similar to storyboarding in video work.

Classroom activities

Kodu games
First pupils play a selection of games from those on the Kodu community site. Then
they are set the task of developing their own game. As a starting point, you might ask
them to create a game in which Kodu (the player’s avatar) is guided through a hostile
landscape, where he encounters enemies.

1

2

39

What’s inside a program?

The details vary from language to language, but each one contains some of the same
structures and ideas. Programmers use these over and over again – in different languages
and to tackle different problems. The following is a summary of the structures.

• Sequence: running instructions in order (see p41);

• Selection: running one set of instructions or another, depending on what happens
(see p43);

• Repetition: running some instructions several times (see p45); and

• Variables: a way of storing and retrieving data from the computer’s memory (see p49).

It’s important that pupils learn these concepts as they progress.

Identify the elements in this Scratch script

This Scratch script
below shows sequence,
selection, repetition
and variables. Before we
consider them in detail,
can you work out which
is which?

41

Sequence
Programs are sequences of instructions. For example,
the sequences of instructions in programs for floor
turtles are built up as the stored sequence of button
presses for what the turtle should do.
The instructions – as they would be for any program – are precise and unambiguous.
The floor turtle will take each of the instructions (in the form of the stored button
presses) and convert that instruction into a signal for the motors driving its wheels.

Identify the elements in this Scratch script

When working with Scratch, pupils’ early programs are likely to be made up of simple
sequences of instructions too. These instructions must be precise, unambiguous and
correctly ordered. In creating algorithms, pupils should have worked out the exact order in
which to put the steps in order to complete the task.

As they start to program, pupils might
simply type a single instruction at a time,
clearing the memory after each. Yet, as
they gain experience as programmers, or
need to solve a problem more speedily,
their sequences grow in complexity.
For example,

Forward
Forward
Forward
Turn left
Forward
Forward

Problem solving with a turtle
Give pupils progressively more complex problems to solve with a floor turtle. Ask them
to plan their algorithm for solving these problems, then create single programs on the
floor turtle.

Classroom activities

Scratch remixed
Assign pupils existing projects from Scratch (see Further resources on page 55). Invite
them to modify these projects by changing the code and observing the ways in which
their modifications affect the program.

1

2

Scratch animations
Using Scratch, pupils design, plan and code scripted animations. If possible, they
should use a timeline or a storyboard to devise their algorithm before converting it into
instructions for the sprites (characters) in Scratch.

3

42

43

Selection
Selection is the programming structure through which
a computer executes one or other set of instructions
according to whether a particular condition is met or not.
This ability to do different things depending on what happens in the computer as the
program is run or out in the real world lies at the heart of what makes programming such
a powerful tool.In Scratch, as with many other languages, we can build selection into
our sequence of instructions. This allows the computer to follow different instructions
according to whether a condition is met or not. The example below shows how this works
in practice.

A simple selection instruction lies
at the heart of many educational
games: if the answer is right then
give a reward, else say the answer
is wrong. (See the Scratch script for
the times tables game later in this
section.)

Selection statements can be ‘nested’
inside one another. This allows more
complex sets of conditions to be
used to decide what happens in a
program.

Nested selection statements in a
clock program

Selection being used in Scratch

Look at how some ‘if’ blocks are
inside others in this script written
in Scratch. It is to model a clock in
Scratch. Note how the script also
uses repetition and three variables
for the seconds, minutes and hours.

44

When designing a game in Kodu, selection is also vital. A set of conditions control an
object’s behaviour in a game. For example, WHEN you press the left arrow, the object moves
left. Similarly, interaction with other objects, variables and environments in Kodu are
programmed as a set of WHEN … DO … conditions. For example, WHEN I bump the apple DO
eat it AND add 2 points to score.

Selection statements in Kodu

Scratch quiz
Pupils use Scratch to design simple question and answer games. Teach them to devise
the overall algorithm for their game before coding. Then encourage them to develop the
user interface, making it more engaging than just a cat asking questions. Teach them
to have a target audience in mind.

Classroom activities

Kodu games
Pupils devise simple games using Kodu. Encourage them to experiment with the
different conditions that a character in Kodu can respond to in its event-driven
programming. Teach pupils consider how they might use such conditions when
developing their own games. Allow them sufficient time to code and to redraft their
code. Encourage them to think carefully about the algorithms they design – that is,
the rules of their game. iCompute has further, easy to follow lessons for this activity.
See www.icompute-uk.com for further details.

1

2

45

Repetition
In programming, repetition is when the program repeats
the execution of certain commands.
Such an occurrence is also referred to as a loop, since the computer keeps looping through
the commands one at a time as they’re carried out. Using repetition makes a long sequence
of instructions shorter and, usually, easier to understand.

Writing code that uses repetition typically involves noticing that some of the instructions
you want the computer to follow are very similar or the same. It therefore draws on the
computational thinking process of generalisation (see pages 24–26).

Example 1:
A program for a Bee-Bot
(forward, left, forward, left,
forward, left, forward, left).

Example 2:
As you can see, for each side we first move forward, then turn left. On a Roamer-Too or a
Pro-Bot, we could use the repeat command to simplify the coding by using the built-in
repeat command, replacing this code with, for example: repeat 4 [forward, left].

The same rules apply in Logo, which is the language that the Roamer-Too and Pro-Bot
programming device-specific languages are derived from.

Consider the following two examples of writing a program to make a square.

1) Drawing a triangle (without repetition)

FORWARD 100
LEFT 120
FORWARD 100
LEFT 120
FORWARD 100
LEFT 120

2) Drawing a triangle (using repetition):

REPEAT 3 [FORWARD 100
LEFT 120]

Compare the next two examples. Both are to draw equilateral triangles. The second
uses repetition; the first does not.

46

Notice how repetition reduces the amount of typing and how it makes the program reflect
the underlying algorithm more clearly. In these examples, the repeated code is run a
certain number of times. It’s also possible to repeat code continually. This is useful in real
world systems, for example in a control program for a digital thermostat. The program
checks room temperature continually, and sends a signal to turn on the heating when it
drops below a certain value. Such techniques are also common in games programming.

Consider, for example,
the following Scratch
code which makes a
sprite continually chase
another around the
screen:

Repetition can be
combined with selection.
In this way a repeating
block of code runs as
many times as necessary
until a condition is met.
Look at the following
example, which is a
fragment in Scratch:

draws

One repeating block can be nested
inside another. ‘Crystal flower’
programs written in Logo use this idea.
Consider the following example:

REPEAT 6 [
REPEAT 5 [
FORWARD 100
LEFT 72]
LEFT 60]

Fish tanks
Pupils produce a fish tank animation in Scratch. They use simple repetition commands
to make each sprite independently with its own set of repeating motion instructions.
They can add additional complexity by including some selection commands to alter
the sprites’ behaviour when they touch. See Scratch 2.0 Fishtank Game tutorial:
www.youtube.com/watch?v=-qTZ5bFEdC8

Crystal flowers
Pupils experiment with crystal flower programs. They may use Scratch, Logo or other
languages that support turtle graphics. They investigate the effect of changing the
number of times a loop repeats as well as the effect of changing the parameters for the
commands inside the loop. This activity offers plenty of scope to make links between
computing and cultural education.

1

2

Classroom activities

47

48

A variable is a simple way of storing a piece of
information in the computer’s memory while the
program is running, and retrieving that information later.
For pupils in primary school, variables are a sophisticated concept. So if you want to
introduce variables to your pupils, it’s a good idea to show them plenty of examples to
help them understand. A classic example, which pupils are likely to be familiar with from
computer games, is score. If you were writing code to make a computer game, you would
most likely make a variable called ‘score’. This variable would store information about the
points gained during a game. When, for example, the character collects a piece of treasure,
you instruct the program to increase the variable ‘score’ by one. As points are collected, the
variable keeps changing.

You can use variables to store data input by the person using your program and then refer
to that data later on.

Name as a variable in Scratch

The following example, in which the user’s name is remembered, comes from code
written in Scratch.

Here, ‘name’ is a variable. The computer stores whatever the user types in, then uses it twice
in Scratch’s response; ‘answer’ is a temporary variable used by Scratch to store for the time
being whatever the user types in. As you can see from this example, variables can store text
as well as numbers. You can store other types of data in variables too. This depends to a
degree on the programming language you’re working with.

49

Variables

50

Inexperienced programmers sometimes find it challenging to grasp the idea that the
contents of the ‘box’ still remain there after the variable is used.

An iterator can also work with words and sentences (or strings as they’re called in
computing) one letter at a time, or through lists of data one item at a time. Be careful with
the start and the finish. Beginning or ending too late or too soon is a common mistake
when setting up iterators.

Using variables in Scratch

Read the following code and work out what will be displayed on the screen:

You should see ‘a is 20’ followed by ‘b is 20’. Try it!

One way to make good use of variables in a program is to use them as an iterator. This
counts the number of times a repeating loop has been completed. Simply set a counter to
zero or one at the start of the loop, then add one each time the loop is completed.

Using an iterator

For example, the following script in Scratch calculates the eight times tables.

Mystery function machine
Pupils create a mystery function machine in Scratch. This accepts an input, stores it in
a variable, then uses mathematical operators to produce an output which is shown on
screen. With the display set to full screen, pupils can challenge one another (and you)
to work out what the program does by trying different inputs.

Games
Pupils use variables in their Scratch games programs. They use scoring to reward a
player for achieving particular goals (for example, collecting apples), and they set a
time limit.

1

2

Classroom activities

51

Debugging is a
vital part of writing code,
but doing it can be more
time consuming than
writing the code in the
first place!

52

53

Debugging: Can we fix it?
‘Bugs’ is the term given to mistakes in code and in
algorithms. The process of searching for and repairing
bugs is known as ‘debugging’.
Debugging is a vital part of writing code, but doing it can be more time consuming than
writing the code in the first place! Bear this in mind as you plan coding activities. And
remember that while debugging successfully and completing a working program brings
great satisfaction, poring over code that refuses to work can cause great frustration. Be
prepared to manage this in class.

It’s useful for pupils in Key Stage 2 to use logical reasoning to find and fix errors in
algorithms and programs. Pupils can correct their code and explain what went wrong and
how they fixed it.

In programming classes, pupils writing a program for a particular purpose might want
you or others to repair their programs. While your first instinct might be to help, please
remember that the objective is not so much to have pupils create a working program, as for
them to learn how to program. Debugging skills are a crucial part of that.

How do you debug?

It’s good practice to provide a robust, general set of debugging strategies which pupils can
use for any programming activity.

Logical reasoning should underpin debugging. This is apparent in the approach of
iCompute. They suggest a logical debugging sequence of four steps.

1. Predict what should happen.

2. Find out exactly what happens.

3. Work out where something has gone wrong.

4. Fix it.

One way to help predict what should happen is to get pupils to explain their algorithm and
code to someone else. In doing so, it’s quite likely that they’ll spot a flaw in the way they’re
thinking about the problem or in the way they’ve coded the solution.

In finding out exactly what happens, it can be useful to work through the code, line by line.
Seymour Papert described this as ‘playing turtle’. So, in a turtle graphics program in Logo
(or similar) pupils could act out the role of the turtle, walking and turning as they follow the
commands in the language.

54

Fixing pre-bugged programs
While pupils will probably make plenty of authentic errors in their own code, it’s also
worth training them to debug by giving them other programs to fix. This can help them
learn strategies for debugging. It also helps you assess their skills in logical reasoning
as well as their programming knowledge. Create some programs containing deliberate
mistakes, perhaps using a range of semantic errors (errors in the logic of the code). Set
pupils the challenge of finding and fixing these.

Peer Debugging
Pupils debug each other’s programs. One way to manage this is that pupils work on
their own programs for the first part of the lesson then take over their partner’s project.
Next they complete this project then they debug it for their partner.

1

2

Classroom activities

Deliberate peer errors
Pairs of pupils to write code containing deliberate mistakes. They challenge to their
partner to discover and repair the errors in the code.

3

In working out where something has gone wrong, encourage pupils to look back at their
algorithms before they look at their code. Before they can begin to fix bugs, they need
to establish whether it was flaw in their thinking or with the way they’ve implemented
that as code.

Some programming environments allow you to step through code one line at a time – you
can do this in Scratch by adding (wait until [space] pressed) blocks in liberally. Scratch will
default to showing where sprites are and the contents of any variables as it runs through
code, which can also be useful in helping to work out exactly what caused the problem.

Debugging is a great opportunity for pupils to learn from their mistakes and to get
better at programming.

55

Further reading
and resources
General

The following sites contain a wealth of practical and engaging ideas,
information and approaches.

œ�ƨƈǐɂȢðșĜƨǯș]ǯœƈ�ǯɿșcÁŉƨƨŷǻ
httpǻ://œÁƨƈǐɂȢðőɂűǘÁƨƈ

œ�ƨƈǐɂȢðșǻɂǐǐƨǯȢǻșǐǯœƈ�ǯɿșǻÁŉƨƨŷșȢð�ÁŉðǯǻÖșðǠɂœǐǐœƏĲșȢŉðƈșɳœȢŉșȢŉðșÁƨƏʢÙðƏÁðÖș
űƏƨɳŷðÙĲðÖșǻűœŷŷǻș�ƏÙșǯðǻƨɂǯÁðǻșȢƨșȢð�ÁŉșÁƨƈǐɂȢœƏĲșÁǯð�Ȣœɱðŷɿș�ƏÙșɳœȢŉșÁƨƏĜœÙðƏÁðǘș
�jjș�ƏÙș�_�ș�ɳ�ǯÙșƏƨƈœƏ�ȢðÙșð�Áŉșɿð�ǯșǻœƏÁðșȹʖƻȬÖșĜð�ȢɂǯðÙșƨƏș�șœȢðǻœʎðș�ƏÙș
Ȣŉðș0ƨɂǯșƨĜș�ƨÙðșȢŉœǻșǻœȢðșœƏÁŷɂÙðǻșǻȢðǐő±ɿőǻȢðǐșŷðǻǻƨƏșǐŷ�Əǻș�ƏÙșȢŉƨɂǻ�ƏÙǻșƨĜș
ǐǯœƈ�ǯɿșÁƨƈǐɂȢœƏĲșǯðǻƨɂǯÁðǻǘ

BBC Bitesize
http://www.bbc.co.uk/education

The Bitesize site has a range of learner guides and programmes to support primary school
pupils on all aspects of computing. Follow the links from the main site to KS2 and then to
Computing.

56

Cœ�ƏðșPǮA�Əð

httpǻ://œÁƨƈǐɂȢðőɂűǘÁƨƈȘƏðɳǻ
Tŉðș±ŷƨĲșƨĜșCœ�ƏðșPǮA�ƏðÖș]ǯœƈ�ǯɿș�ƨƈǐɂȢðǯșcÁœðƏÁðșJ�ǻȢðǯșjð�ÁŉðǯÖșjð�ÁŉðǯȘ
jǯ�œƏðǯ, contains many of ŉðǯ articlesÖșǯðǻƨɂǯÁðǻ and other publications on
computing ðÙɂÁ�ȢœƨƏ.

Wider reading

Computer Science Teachers Association, ‘CSTA Computational Thinking Task Force’
and ‘Computational Thinking Resources’:
http://csta.acm.org/Curriculum/sub/CompThinking.html

Computing at School, ‘Computational Thinking’:
http://community.computingatschool.org.uk/resources/252

Curzon, P, Dorling, M, Ng, T, Selby, C and Woollard, J, ‘Developing Computational
Thinking in the Classroom: A Framework’ (Computing at School, 2014), available at:
http://community.computingatschool.org.uk/files/3517/original.pdf

Google for Education, ‘Exploring Computational Thinking’:
www.google.com/edu/computational-thinking/index.html

Wing, J, ‘Computational thinking and thinking about computing’
(The Royal Society, 2008):
http://rsta.royalsocietypublishing.org/content/366/1881/3717.full.pdf+html

Topics

Logical reasoning
Computer Science for Fun, ‘The Magic of Computer Science’, available at:
www.cs4fn.org/magic/

Computer Science Unplugged, ‘Databases Unplugged’, available at:
http://csunplugged.org/databases

McOwan, P and Curzon, P (Queen Mary University of London), with support from EPSRC
and Google, ‘Computer Science Activities with a Sense of Fun’, available at:
www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf

Decomposition
NRICH, ‘Planning a School Trip’, available at:
http://nrich.maths.org/6969

57

Glossary
Abstraction (process): the act of selecting
and capturing relevant information about a
thing, a system or a problem.

Acceptable Use Policy (AUP): An
Acceptable Use Policy comprises a set of
rules applied by the owner/manager of a
network, website or large computer system
that defines the ways in which the network,
site or system may be used.

Algorithm: An unambiguous set of rules
or a precise step by step guide to solve a
problem or achieve a particular objective.

Command: An instruction for the
computer to execute, written in a particular
programming language.

Computational thinking: Thinking about
systems or problems in a way that allows
computer systems to be used to model or
solve these.

Computer networks: The computers
and the connecting hardware (wifi access
points, cables, fibres, switches and routers)
that make it possible to transfer data using
an agreed method (‘protocol’).

Data: A structured set of numbers, possibly
representing digitised text, images, sound
or video, which can be processed
or transmitted by a computer, also used for
numerical (quantitative) information.

Debug: To fix the errors in a program.

Decomposing/ decomposition: The
process through which problems or systems
are broken down into their component
parts, each of which may
then be considered separately.

E-safety: Used to describe behaviours
and policies intended to minimise the
risks to a user of using digital technology,
particularly the internet.

Generalisation: A computational thinking
process in which general solutions or
models are preferred to or derived from
particular cases.

Hardware: The physical systems and
components of digital devices; see also
software.

Input: Data provided to a computer
system, such as via a keyboard, mouse,
microphone, camera or physical sensors.

Interface: The boundary between one
system and another – often used to
describe how a person interacts with a
computer.

Loop: A block of code repeated
automatically under the program’s control.

Open source software: Software in which
the source code is made available for others
to study, and typically adapt, usually with
few if any restrictions.

Operating system: The programs on
a computer which deal with internal
management of memory, input/output,
security and so on, such as Windows 8 or
iOS.

Output: The information produced by a
computer system for its user, typically on
a screen, through speakers or on a printer,
but possibly through the control of motors
in physical systems.

Packets of data: A small set of numbers
that get transmitted together via the
internet, typically enough for 1000 or 1500
characters.

Program: A stored set of instructions
encoded in a language understood by
the computer that does some form of
computation, processing input and/or
stored data to generate output.

Programming (or coding) is the term
given to the writing of programs.

Programmable toys: Robots designed for
children to use, accepting input, storing
short sequences of simple instructions and
moving according to this stored program.

Repetition: Executing a section of
computer code a number of times as part of
the program.

Script: A computer program typically
executed one line at a time through an
interpreter, such as the instructions for a
Scratch character.

Selection: A programming construct
in which one section of code or another
is executed depending on whether a
particular condition is met.

Sequence: To place program instructions
in order, with each executed one after the
other.

Simulation: Using a computer to model
the state and behaviour of real-world (or
imaginary) systems, including physical
or social systems; an integral part of most
computer games.

Software: computer programs such as
Office programs, web browsers, games and
the computer operating system. The term
also applies to apps running on mobile
devices and to web-based services.

Sprite: A computer graphics object
that can be controlled (programmed)
independently of other objects or the
background.

Variables: A way in which computer
programs can store, retrieve or change data,
such as a score, the time left, or the user’s
name.

58

63

jðÁŉƏƨŷƨĲɿ

ȑʖ

The term ‘computer’ originally referred to people
whose job it was to perform repeated numerical
calculations according to a set of instructions (i.e. an
algorithm). Since the 1940s it has been used to refer
to digital machines that accept data input, process
this according to some set of stored instructions
(i.e. a program) and output some sort of information.

The power of digital computers comes from their
ability to run through these stored instructions
incredibly quickly. The silicon chip at the heart of
a modern smartphone can execute over a billion
instructions per second!

A digital computer comprises two inter-related systems.
⚫ Hardware: the physical components, including the

processor, memory, power supply, screen, etc.
⚫ Software: the core operating system, embedded

control programs, compilers or interpreters and
many application programs.

There is an incredible variety of electronic devices
that contain some sort of digital computer. There are
two different types of device:

Computer-controlled for specific purpose
• digital watch
• digital television
• digital camera …

Programmable computer – can do many
different things
• laptop
• tablet
• smartphone …

The memory of a computer stores both the programs
it needs to operate and the data that it processes.
There are different types of computer memory and
usually there’s a trade-off between speed and cost.
These days, high capacity storage has become very
cheap, so that data centres can provide users with
vast amounts of storage for little or no cost through
services such as Microsoft OneDrive and Google Drive.

Irrespective of where programs or data are stored in
computer memory, they are always stored in a digital
format. Information is represented as sequences of
numbers. The numbers themselves are stored in a
binary code, represented using just two symbols:
0 and 1 (this number system is called base 2). Each 0
or 1 is called a bit.

A range of standard codes are used to convert machine
code, images, sound or video into a digital format.
These provide standard ways to represent information
of different types in binary. Text data is encoded in
Unicode. A byte is a group of eight bits; it’s used as a unit
of memory. Eight bits are more than enough to store
one character from the Latin alphabet, in upper or lower
case, a punctuation symbol, a digit, etc. One thousand
bytes make a kilobyte: enough to store 1000 characters
(a short paragraph).

Images, sound and video have their own accepted
standards for being encoded digitally, such as bitmaps
for images or ‘WAV’ files for audio. These typically
take up much more room than text, so often a form
of compression is used (where patterns in the data
help reduce the amount of storage space needed). If
the original data can be recovered perfectly this is

How do computers
remember things?

Technology

What is a computer?

Technology

called lossless compression. If some of the original
information is thrown away, the original image, sound
or video can be stored in a much more compact format,
although some of the original quality is lost in the
process: this is ‘lossy’ compression.

Interestingly, the key stage 2 programme of
study is more concerned with how information is
communicated than how it’s stored, but binary
representation should be covered in:
⚫ ‘work with … various forms of input and output’
⚫ ‘understand computer networks, including the

internet’.1

In order for a computer to be able to do anything
in the real world, it needs some form of input (to
receive data) and some form of output (to push
information back out).

The form of input will vary:

Laptop inputs
• keyboard
• trackpad/touchpad
• microphone
• webcam
• through a port (e.g. USB mouse)
• via a network connection …

Smartphone inputs
• touch-sensitive screen
• buttons
• microphone
• camera
• GPS receiver
• accelerometer
• barometer
• through a port
• via a network connection …

A computer will need to convert the analogue, real-
world data it receives into a digital format before
it can be processed, stored or transmitted. We call
this process digitisation and it inevitably involves
throwing away some of the fine detail of the real-
world information.

Computers can produce many different forms of output:

Laptop/desktop PC outputs
• screen
• speakers
• printer
• headphones
• network connections ...

Smartphone/tablet outputs
• screen
• speakers
• small motor to produce vibrations
• bright LEDs used as a flash
• network connections ...

What is a robot?
A robot is a computer that can move. This could be a
single, integrated system such as a programmable
toy, or it could be a motor under a computer’s
control, such as a robotic arm in manufacturing.

Robots are used widely in industry, where repetitive
tasks can be performed effectively and efficiently by
machines. As ‘smarter’ algorithms have been developed
by computer scientists, more and more decision-making
capabilities can be built in to the robot, so that it can
autonomously react to changes in its environment.

 Further resources

⚫ ‘Arduino the cat, Breadboard the mouse and
Cutter the Elephant’: video of a group of girls
planning and programming soft toys, available at:
http://vimeo.com/4313755.

⚫ BBC Cracking the Code: Miniature computers,
available at: www.bbc.co.uk/programmes/
p01661f7.

⚫ BBC Cracking the Code: Robots, available at:
www.bbc.co.uk/programmes/p01661tn.

How do computers interact
with the real world?

1 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

61

63

KðȢɳƨǯűǻ

QuickStart Computing

Computer
networks

How do computers
communicate?

Connecting computers to form computer networks and
the internet (a network of networks) has had a huge
impact on our lives.

Think about how limited our use of technology in school
would be if we had no access to the local network or
the internet. Think about how frustrating it is when we
have no data signal for our smartphones or wifi for our
laptops.

The internet has made it possible to communicate
and collaborate with a richness and immediacy never
experienced before. And yet, it’s something that most of
us take for granted.

The new computing curriculum sets out to change this.
It requires that pupils are taught:
⚫ in key stage 1: to ‘recognise common uses of

information technology beyond school’
⚫ in key stage 2: to ‘understand computer networks,

including the internet [and] how they can provide
multiple services, such as the world wide web’

⚫ in key stage 2: to ‘use search technologies effectively,
appreciate how results are selected and ranked, and
be discerning in evaluating digital content’.1

The internet is a physical thing: it’s the cables, fibre,
transmitters, receivers, switches, routers (and all the
rest of the hardware) that connects computers, or
networks of computers, to one another.

The internet has been designed to do one job: to
transport data from one computer to another. This
information might be an email, the content of a web
page, or the audio and video for a video call.

The data that travels via the internet is digital: this
means it is expressed as numbers. All information on the
internet is expressed this way, including text, images
and audio. These numbers are communicated using
binary code, which is made up of 1s and 0s, using on/
off (or low and high) electrical or optical signals. Binary
code is similar to the Morse code used for the telegraph
in Victorian times, but it’s much, much faster. A good
telegraph operator could work at maybe 70 characters
(letters) a second, but even a basic school network
can pass data at 100 million on/off pulses a second,
enough for some 12.5 million characters per second. One
transatlantic fibre connection has the capacity for up to
400 billion characters per second!

Digitised information needs to be broken down into small
chunks by the computer before it can be sent efficiently.
These smaller chunks of data are known as ‘packets’.

The small packets can be passed quickly through the
internet to the receiving computer where they are re-
assembled into the original data. The process happens
so quickly that high definition video can be watched this
way, normally without any glitches.

1 National Curriculum in England, Computing Programmes of Study
 (Department for Education, 2013).

How does the internet work?

How the internet
works

Computer networks

The packets don’t all have to travel the same way
through the internet: they can take any route from
sender to recipient. However, there is generally a most
efficient route, which all the packets would take.

A sample network: note there is more than one route for packets to travel.

It’s perhaps easier to understand how the internet
works now by looking at a picture of how it worked in
1969 when it started:

Here you see the internet made up of just four routers:
UCLA, SRI, UCSB and UTAH. Each router is a piece
of hardware that passes packets of data from the
networks they are connected to (in the case of UTAH,
PDP10, in the case of UCLA, SIGMA 7) to any of the other
three networks.

So if you were using the PDP10 network at the
University of UTAH and sent a message to someone

at UCLA, your message would be passed first to your
router at UTAH, then on to the router at Stanford
Research Institute (SRI), then (normally) to UCLA’s
router, where it would be passed on to whichever
recipient it was intended for on their SIGMA 7.

The internet is obviously much, much bigger than this
example. In real life, the journey of a packet of data from
your home computer to one of Microsoft’s server farms
might look something like this:

your home wifi access point
�

your home switch and router
(usually all in the same black box)

�

switches in your nearest BT green cabinet
�

more switches in your local telephone exchange
�

London internet exchange
�

routers near Porthcurno in Cornwall
�

fibre optics under the Atlantic
�

further switches and routers in the USA
until Microsoft’s internet connection at whichever

of its data centres you are communicating with

When you type a URL (such as www.bbc.co.uk or
ɳɳɳǘœÁƨƈǐɂȢðőɂűǘÁƨƈ) into your browser you send a
packet of data requesting the content of these pages
to be returned to you. But before this can happen, the
domain name first needs to be converted into numbers.
This is the job of the Domain Name Service (DNS),
which converts these familiar web addresses into
numbers known as IP (Internet Protocol) addresses.
The DNS itself uses the internet to look up (in the
equivalent of huge phone books) the numeric address
corresponding to the domain names.

Each packet has a destination IP address on it. With
it the router can easily look up which way to pass the
packet on.

Server

Server

Most efficient route
for packets

 Key

Router

Network

Stanford Research Institute
University of UTAH

University of California, Santa Barbara

University of California, Los Angeles

Key

Router

6�

Who can see the data we transmit? Table 1 (6 pupils)

Table 2 (6 pupils)

Router

Router

1.41.3 1.5

1.11.0 1.2

2.42.3 2.5

2.12.0 2.2

To: 2.3
Sequence: 1 of 3
Data: What
From: 1.5

To: 2.3
Sequence: 2 of 3
Data: is for
From: 1.5

To: 2.3
Sequence: 3 of 3
Data: tea?
From: 1.5

There’s nothing to stop routers from looking at the data
in the packet before they pass it on (just as there was
nothing to stop telegraph clerks reading the messages
they passed on in Morse code).

To be able to send information, such as passwords
or bank account details, secretly via the internet, it’s
important to encrypt the data first. This happens
automatically when using the ‘https’ version of websites
(see page 37). In these situations, you’ll see a little
green padlock displayed in
your browser’s address bar.
The data is decrypted when it
reaches its destination.

Classroom activity ideas

⚫ Ask pupils to draw a picture of the internet. This will
allow you to spot any misconceptions they have,
and provide an opportunity for pupils to share their
understanding.

⚫ Carry out this ‘unplugged’ activity to model how the
internet passes packets of data.
» Organise all but four of your pupils into groups.
» Tell the pupils to choose one pupil in their group to

be the ‘group router’. The rest of the group will be
‘computers’.

» Ask the remaining four pupils to take on the role of
‘internet routers’, which connect the group routers
together.

» Give each ‘computer’ a numerical address,
comprising a group number and a computer
number (e.g. 1.1, 1.2, 1.3; 2.1, 2.2, 2.3, etc.).

» Ask each ‘computer’ to write a short message to
another ‘computer’ in a different group, splitting
their message over three different slips of paper
and marking their slips ‘1 of 3’, ‘2 of 3’ and ‘3 of 3’.
Tell them to write their numerical address and the
numerical address of the recipient, e.g. ‘To: 2.2;
From 3.4; 2 of 3.’ This is the ‘packet header’.

» Ask the ‘computers’ to pass their slips to their
‘group router’, who can pass these on one at a time
to the ‘internet routers’. They in turn pass them
to the correct ‘group router’ who passes them to
the recipient themselves, who can reassemble the
message as their other packets arrive.

Role-playing a computer network in class.

⚫ Investigate the physical infrastructure of the school
network. Tell the pupils to walk from their laptop to
the local wifi point, or to follow the network cable
from the computer to the classroom switch. Next,
walk together to the school’s main network switch,
firewall and router. If you can, then walk down to the
nearest BT green cabinet, and perhaps to your local
telephone exchange, depending on how close this is
to you.

⚫ Explore the steps on the journey of a packet using
the ‘tracert’ command at the Windows command
prompt, if you have access to this. Also see the Visual
traceroute reference in Further resources.

⚫ Ask your school network manager to talk pupils
through how the school network connects their
computers to the rest of the internet.

Further resources

⚫ iCompute., ‘iWeb & iNetwork’, available at:
www.icompute-uk.com

⚫ BBC Bitesize clip ‘Computer networks – LAN and
WAN’, available at: www.bbc.co.uk/learningzone/
clips/computer-networks-lan-and-wan/4381.html.

⚫ Blum, A., Tubes: Behind the Scenes at the Internet
(Viking, 2012).

Message slips

65

35

Computer networks

⚫ Andrew Blum’s talk ‘Discover the physical side of the
internet’, available at: www.ted.com/talks/andrew_
blum_what_is_the_Internet_really.

⚫ Artistic representations of what the internet means,
available at: www.canyoudrawtheinternet.com.

⚫ Naughton, J., From Gutenberg to Zuckerberg: What
You Really Need to Know About the Internet (Quercus,
2012).

Picture the train network, efficiently routing trains of
all kinds from one point to another, irrespective of what
those trains contain. Some will have passengers, others
freight, others are perhaps maintenance stock. In the
same way, the infrastructure of the internet can be used
for lots of different things.

The services which run on computer networks, including
the internet, fall into roughly two groups:
1. client–server: one computer (the client) accesses

services or content running or stored on another,
typically larger, computer (the server)

2. peer-to-peer: two computers communicate directly as
equals, passing data directly to and from each other.

The World Wide Web (see page 36) fits into the client–
server model, but so do lots of other services which
use computer networks and the internet as a means of
communicating.

A school network will often have one or more computers
acting as servers, responding to requests from the
desktop, laptop and tablet computers which act as
clients. On a local area network (LAN) like this, the
servers might provide: central storage and backup for
files, access to documents, etc. from any computer on
the network, a management information system (such
as SIMS), local email accounts, access to printers,
username and password authentication, filtering and
logging of access to the web and even locally stored
copies of frequently visited web pages.

Email is a good example of a client–server system using
the internet (although many people’s experience of email
is as webmail accessed through a browser like Internet
Explorer). The journey of an email might be something
like this:
⚫ Alice opens up Outlook and starts typing in her email

to Bob. She includes Bob’s email address, bob@
builders.com, in the ‘To’ line of the email and clicks
‘send’.

⚫ The email is transmitted via the internet (or the local
network) to her outgoing mail server. If the email
is intended for another domain (builders.com here)
rather than Alice’s own (lookingglass.org) then
Exchange will forward the email as packets of data
via the internet, which routes these through to the
incoming mail server for builders.com as discussed
above.

⚫ The inbound mail server at builders.com (again
perhaps running Exchange) re-assembles the
message from the packets of data, accepts this and
stores this ready for Bob to collect.

⚫ Later on, Bob’s email client (perhaps also Outlook)
connects to his mail server and asks if there are
any messages for him. The one from Alice gets
transmitted to Bob’s computer via the local network
or the internet, where Bob can read it in his email
software.

Although it might look to Alice and Bob as though they
are communicating directly with each other, all their
emails are going via the outbound and inbound mail
servers. Notice that the contents of their emails aren’t
encrypted, so the organisations running the two mail
servers can read the contents of these messages if
they wish.

Not all communication on the internet uses a client–
server model. For example, peer-to-peer communication
is a model used for Skype and a number of other video
conferencing or voice over internet systems. Although
Skype uses a server to maintain a list of logged-in users
and the IP address of their computers, when a call is

What can you do with the internet?

Client–server

Client computer

Client computer

Server computer

Client computer

Peer-to-peer

66

connected the packets of data that make up the
digitised video and audio for the call are routed
directly through the internet between the two parties.

Some online gaming websites use a similar peer-to-
peer system, as does BitTorrent, a protocol which
allows large files to be shared between many
computers by allowing direct peer-to-peer connections.
Because peer-to-peer connections are harder for large
organisations to monitor, they are favoured by those
using the internet for criminal purposes, for example
the use of the BitTorrent protocol for illegally sharing
copyrighted material.

Classroom activity ideas

⚫ Role-play can be used very effectively to teach
how email works and issues with email security.
Explain to pupils that email addresses can be
‘spoofed’ or accounts hacked. So, not all emails
are from who they appear to be. Warn them that
files attached to emails can contain viruses. Also
explain that links in emails can sometimes point
to websites that are set up to capture personal
information such as passwords. You might like
to run this as part of a larger topic looking at
the effective and safe use of email, perhaps in a
twinning project with a class in this or another
country.

⚫ Share and write a range of emails and written
letters. Discuss the advantages and
disadvantages of each type of communication.

⚫ Use a video conferencing system to allow experts
to talk to the class or to allow two classes to
communicate. As you set up the computer, talk
through the technical aspects of the call with
your pupils. Note: Skype and most other video
conferencing systems don’t allow children to
register for accounts, so you will need to run this
as a whole-class activity.

⚫ Encourage pupils to talk about how they and
their families use the internet to communicate,
highlighting any services they use in addition to
the World Wide Web.

Further resources

⚫ Guha, S., Daswani, N. and Jain, R., ‘An Experimental
Study of the Skype Peer-to-Peer VoIP System’
(2006), available at: http://saikat.guha.cc/pub/
iptps06-skype.pdf.

⚫ The journey of a letter, available at:
www.anpost.ie/anpost/schoolbag/primary/
our+people/the+journey+of+your+mail/.

⚫ ‘Story of Send on Google Green’ (a short cartoon
about the journey of a gmail), available at: www.
youtube.com/watch?v=5Be2YnlRIg8.

In 1989, British computer scientist Tim Berners-Lee
decided to combine the capabilities of the internet
with the functions of hypertext (documents that
include hyperlinks that allow connections to be
made between different files) to manage information
systems at CERN where he was working.

The links in the hypertext take the reader to different documents which
extend or support the information in the original document.

Berners-Lee developed a specification for how an
internet-based version of hypertext would work and
then wrote the software for the first web servers
and web browsers. The result was the World Wide
Web.

The internet is about connecting computers together,
but the World Wide Web is about the connections
between documents. When you click on a web link,
another web page is requested from (typically) a
different web server somewhere else on the internet.

What is the World Wide Web?

Hypertext

67

37

Computer networks

The content of this web page is then delivered to
your web browser.

The World Wide Web is about the connection (the links) between
documents.

To ensure that all computers could communicate with
one another, Berners-Lee developed a set of standards
(called protocols) for the Web. Versions of these are all
still used today.

1. HTTP (HyperText Transfer Protocol)
This is the process that computers use to request and
transfer hypertext to one another.

The Web is a client–server system: we use a web
browser on our computer to request a web page
from one of the many, many web servers connected
to the internet. The request travels as a packet
of data via switches and routers until it reaches
the intended web server. The server responds by
sending back the content of the page, together with
any images and formatting instructions and mini
programs (typically in JavaScript) needed for the
page. If the page isn’t there, it sends back a ‘404:
Not found’ error message – sometimes you’ll see
other error messages too.

Remember that the internet doesn’t encrypt packets
of data: there’s another version of HTTP, called HTTPS,
where the request for a page, the contents of the page
and any information entered into a form (such as a
password) are sent over the internet in an encrypted
form. This encryption can sometimes be bypassed by
network managers and government agencies.

2. URL (Uniform Resource Locator)
URLs are the precise location on the Web where web
pages or their components are stored. It’s what you
type in to your browser’s address bar to request a page.

Each bit of a URL means something. Let’s look at the
URL of one of the first web pages – Berners-Lee’s
home page for the World Wide Web project itself –
to work out what each bit means:

http://info.cern.ch/hypertext/WWW/TheProject.html

⚫ http: this is the protocol we’re using to request
hypertext and the content that comes back – see
above.

⚫ :// is just punctuation – Berners-Lee now thinks it
would have been better if he’d skipped the // bit!

⚫ info is the name of the web server we’re connecting
to. Often this will be www these days, or this is just
omitted as the main web server for the organisation
will be assumed.

⚫ cern is the name of the organisation, in this case the
European Centre for Nuclear Research.

⚫ ch is an abbreviation for the country where the
organisation has registered their domain name, in
this case Switzerland. Some countries also show
what sort of organisation it is registered as,
e.g .co.uk for a commercial site and .sch.uk for a
school site in the UK. If no country is shown, then it
will be registered in the USA: .com for commercial
sites, .edu for university sites, and so on.

⚫ /hypertext is a directory (folder) on the web server.
⚫ /WWW is a directory inside the /hypertext

directory on the web server.
⚫ TheProject is the name of the actual file we’re

requesting, in this case a web page about the
World Wide Web project. Sometimes you don’t see
a file name at the end of a URL, in which case the
web server will send back the default file for the
directory, often an index page such as index.html.

⚫ .html is the file extension, which shows what
format the page is written in, in this case HTML
(see page 38). This is like .doc or .docx for a Word
file, or .jpg or .jpeg for an image.

Although it is often convenient to use search engines
like Google or Bing to find pages rather than typing
in URLs, the URL is a good way to check that you’re
connecting to the web server you think you are
(rather than a spoof website). URLs are also useful
when acknowledging sources of information, and for
creating links between pages (and so building more
of the connections that make the Web so useful).

What standards does the
World Wide Web use?

6568

3. HTML (HyperText Mark-up Language)
HTML is the computer language (code) in which the
content and structure of a web page are described or
‘marked up’.

The content of web pages is stored in HTML format
on web servers. Creating a web page involves writing
(or getting a computer to generate) the HTML that
describes the page. HTML can be read, and written,
by humans as well as computers. You can view the
HTML source code for any web page using tools built
into your web browser. (There’s a menu command to
do this, or you can press ‘ctrl-u’ in Internet Explorer.)

These days, the HTML for a web page might not
be stored as a file on the web server: in content
management systems, when a page is requested it
will be generated automatically using a database
of content, a template and some programs running
on the web server. For example, every time you
visit www.bbc.co.uk/newsround/ the page will be
generated using the latest news in the database.

More recently, a couple of other languages have come
to play an important part in developing for the Web.

CSS (Cascading Style Sheets)
CSS provides formatting information alongside the
content and structure of HTML, allowing designers
and developers to specify exactly how the content of
the page should be displayed in the web browser on a
computer, tablet, smartphone or printer.

JavaScript
JavaScript is a programming language that can be
interpreted by the web browser itself, allowing
interaction with the content of a page to be handled
by the user’s computer (the client) rather than on
the server itself. The web-based version of Office
365 relies heavily on JavaScript.

The amazing thing about the Web isn’t really these
technologies though. It’s that, from its early days as the
preserve of academic scientists, so many organisations
and individuals have connected their own web servers
to the internet and added their own content to the Web.
In part this was because Berners-Lee created a system
that was accessible, scalable and extensible, capturing
the imagination of many. But it’s also because he and

CERN gave it to the world for free – the standards and
the technology were entirely open, without any central
authority or commercial company licensing or charging
for their use.

Classroom activity ideas

⚫ The national curriculum for history suggests that
key stage 1 pupils could look at William Caxton
(who introduced the printing press to England
in the fifteenth century) and Tim Berners-Lee as
examples of ‘the lives of significant individuals
in the past who have contributed to national and
international achievements’. Compare the life,
work and influence of these two figures.

⚫ Encourage pupils to look at the different parts
of the URLs for the web pages they visit, asking
them to explain what each part of the URL means.
Make a display showing the different parts of
some interesting or common URLs.

⚫ Ask pupils to talk to their parents, grandparents
or carers about the difference the World Wide
Web has made in their lives.

⚫ Tell pupils to keep a diary of the different ways
they use the Web over a week.

 Further resources

⚫ BBC Bitesize ‘What is the world wide web?’, available
at: http://www.bbc.co.uk/guides/z2nbgk7.

⚫ Tim Berners-Lee ‘Answers for Young People’,
available at: www.w3.org/People/Berners-Lee/
Kids.html.

⚫ The original CERN home page for the Web,
available at: http://info.cern.ch/hypertext/WWW/
TheProject.html.

⚫ Codecademy curriculum materials, available
at: www.codecademy.com/schools/curriculum
(registration required).

⚫ Mozilla Web Literacy whitepaper, available at: http://
mozilla.github.io/webmaker-whitepaper/.

⚫ Wayback Machine to search for historic web
pages, available at: http://archive.org/web/.

There are plenty of tools available for you and your
pupils to create your own content for the Web.

Your school’s learning platform or VLE provides one
way to get content online, as do blogging platforms

How do you make a web page?

What’s the most amazing
thing about the Web?

69

39

Computer networks

like WordPress. These platforms usually include a
‘WYSIWYG’ (what you see is what you get) editor.
This makes writing content for the Web similar to
using Microsoft Word, with a range of formatting
controls built in. In most of these editors, you can
swap into code (or source view), seeing and editing
the HTML itself. This can be a good introduction to
working directly in HTML, as you can always swap
back to the WYSIWYG view to see the effects of
editing the code.

Giving pupils some experience of writing content
for the Web through editing HTML ‘by hand’ is well
worth doing although it isn’t, strictly speaking,
programming. It adds to their understanding of
networks including the internet that the national
curriculum at key stage 2 expects, and is one more
way of using software on a range of devices to
create content. It is also a good way to get pupils
used to working in a formal, text-based computer
language. As with other text-based languages,
working in HTML helps reinforce the importance of
spelling, punctuation and grammar: mistakes in the
mark-up of the page usually become quite apparent
in the way the browser displays the page.

Many pupils are likely to find these skills useful in the
long term too, both at secondary school and beyond:
developing content for the Web is part of many jobs,
teaching included.

Let’s compare the HTML code for a simple web page
and the page itself.
<!doctype html>
<html>
 <head>

<meta charset=“utf-8”>
 <title>A simple webpage</title>
 </head>
 <body>
 <h1>Origins of the Web</h1>
 <p>Tim Berners-Lee started working on
the world-wide web project in 1989.</p>
 <p>He was working at <a href=“http://
home.web.cern.ch/”>CERN in Switzerland
at the time.</p>
 <img src=“http://upload.wikimedia.org/
wikipedia/commons/thumb/7/7e/Tim_Berners-
Lee_CP_2.jpg/320px-Tim_Berners-Lee_CP_2.
jpg”>
 </body>
</html>

Can you see where the content for the page comes
from in the code? Can you see what effect some of
the HTML tags (the bits in the <...> angle brackets
like <h1> and <p>) have on how the content is
structured?

Notice how most of the tags come in matched pairs,
e.g.
⚫ <html> and ending </html> for the whole page
⚫ <head> to </head> for the information about the

page, such as its character set and title
⚫ <body> to </body> for the content of the page
⚫ <h1> to </h1> around the main heading for the

page
⚫ <p> to </p> around each paragraph.

Compare the underlined link in the web page with the
corresponding code. In the code, <a> to show
where the link should be and href=“http://home.
web.cern.ch/” inside the <a> tag detail where the
link should point to.

An image is inserted from elsewhere on the web,
using a single tag, this time without a
matched closing tag, and again giving the location of
the image using src=“http://upload.wikimedia.
org/wikipedia/commons/thumb/7/7e/Tim_
Berners-Lee_CP_2.jpg/320px-Tim_Berners-
Lee_CP_2.jpg” inside the tag.

Mozilla’s Thimble tool for creating websites
(available at: https://thimble.webmaker.org/) makes
it easy to get started with coding in HTML, as it
displays the source code alongside the resulting
web page.

What does HTML look like?

How do I get started with HTML?

Origins of the Web
Tim Berners-Lee started working on the world-wide web project in 1989.

He was working at CERN in Switzerland at the time.

70

Rather than starting from a blank page, pupils can
try editing other web pages, exploring the structure
and HTML code of these pages and seeing what
effect changing the code has on how the page is
displayed in the browser.

On Internet Explorer, you can use the Developer
Tools (hit F12, or launch via the menu) to view and
edit the source code (the HTML code which describes
the content and structure) for a page. Alternatively,
you can install Mozilla’s X-Ray Goggles as an active
bookmarklet (see Further resources) to remix and
share edited web pages.

 Classroom activity ideas

⚫ When using their learning platform, VLE or class
blog, encourage pupils to swap from the normal
WYSIWYG (what you see is what you get) mode of
the built-in editor into the code, source or HTML
mode and try writing their post or page in that.
Remind them that they can swap back and forth
to see how the code relates to the page that’s
displayed. Give pupils a list of some common HTML
tags to try out for themselves.

⚫ Set pupils the challenge of making a parody of a web
page by using either the Developer Tools in Internet
Explorer or X-Ray Goggles to edit the code for the
page. It’s wise to decide some ground rules for this
activity in advance. Show pupils how easily a spoof
page can be created this way, and explain why it’s so
important to check the address of the page they’re
visiting to confirm it is authentic rather than merely
one which looks convincing.

⚫ Rather than asking pupils to write up a story or a
report using Word, challenge them to do this using
HTML code to make a web page. Emphasise that they
need to concentrate on the content and structure
of their page, which is what HTML is designed
for. Encourage them to add in links to supporting
material using the <a> tag if they’re creating a non-
fiction account, and perhaps to add in some images
from elsewhere on the Web using the tag.

 Further resources

⚫ Learn to code tutorials from Codecademy, available
at: www.codecademy.com/ (registration required).

⚫ Shay Howe ‘Learn to Code and CSS’ tutorials,
available at: http://learn.shayhowe.com/.

⚫ ‘App Design Basics: Learn to code using HTML
and CSS’ from Playto, available at: https://learn.
playto.io/html-css/lesson/0.

⚫ Thimble: https://thimble.webmaker.org/.
⚫ Tutorials on a wide range of computer languages

from w3schools, available at: www.w3schools.com/.
⚫ See the source code behind web pages using X-Ray

Goggles, available at: https://goggles.webmaker.org/.

Search engines like Google and Bing have
transformed the way we use the Web. Instead of
having to remember URLs for the pages we want, or
following the links from one page to another, we can
normally rely on these web-based programs to give
us the most relevant results for our query.

Given how much we use search engines, it’s
important to use them effectively and efficiently,
to show some discernment in deciding how far a
particular page can be trusted, and to have some
grasp of the algorithms that underpin them.

In order for Bing or Google to be able to respond
to a search query, they use their index of the Web.
A search engine builds its index by using specially
written programs called ‘web crawlers’. The
web crawlers create a huge copy of the publicly
accessible bits of the Web (called a cache) which is
stored on the search engine’s servers.

When a new or updated copy of a web page is added
to the cache, an entry for the page will be added to,
or updated in, the search engine’s index of the Web
for each of the words on the page (typically ignoring
small, common words like ‘and’, ‘the’ and so on). The
web crawlers continue to build and update the cache
by following all the hyperlinks in the page, requesting
and making copies of those pages too, adding or
updating index entries for them, and following the
links on those pages too. And so on.

So when we type in a keyword such as ‘dog’ into a
search engine, it consults the index and returns a list
of all the web pages on which that keyword appears.
Typing in several keywords, e.g. ‘dog’ and ‘bowl’
would only return pages with both of these keywords,
which helps to narrow down the set of results.

The really clever bit about web searches is not the
list of results, but the right rank order the results
are put into. How do the search engine algorithms
decide what to put top of the list?

How does a search engine work?

How are search results ranked?

71

41

Computer networks

Google’s founders, Larry Page and Sergei Brin,
recognised that the key to determining how relevant
a particular result was likely to be lay in the links
between other pages and the result. They realised
that a high quality page is a page that has lots of
links pointing to it from other web pages, particularly
if they too were high quality results. This is shown
in the illustration below, where the larger the circle,
the higher the quality of the web page.

The cached and indexed copy of the (publicly accessible)
Web on the servers of search engines also includes
the links between them. This allows Page and Brin’s
PageRank algorithm to work out which pages are
considered the highest quality to other web developers
(as they add links to those into their own content). Thus,
for many queries the Wikipedia entry will often be at the
top of, or at least high up, the results list, not because
of its accuracy or authority, or even because people
click on this more than other results, but because lots of
the other high quality search results link to it.

The actual algorithms that search engines use can be
very complicated and are frequently tweaked to keep
one step ahead of the ‘search engine optimisation’
(SEO) industry that tries to improve the ranking for
its clients’ pages. These days, the ranking of results is
typically personalised: based on location, the history
of what the user’s searched for and clicked on before,
and close on 200 other factors or ‘signals’.

When teaching pupils about how search engines work,
point out the ‘sponsored’ results which are shown
above or to the side of those generated using this
relevance algorithm. The sponsored results are also
algorithmically generated, based on the keyword,
some quality measure for the advert, the page it
points to and often your search history. They’re
placed on a ‘pay per click’ basis: the search engine
doesn’t charge for showing the advert, but the
advertiser pays when you click on it, so it’s in their
interests to only show the most relevant adverts here.

The mechanics will vary from one search engine to
another, but a good search engine should also: filter
out explicit content automatically, allow you to search
within a particular site, allow results to be filtered by
their location (e.g. just the UK) and by date range (e.g.
just pages created or edited in the last year). Some
search engines even allow results to be filtered by
reading level, for example restricting the results to
those written using shorter words or less complex
sentences.

 Classroom activity ideas

⚫ Encourage pupils to use search engines for
independent or guided research projects. Get
pupils to experiment with the effect that adding in
additional keywords or searching for phrases (by
putting quotation marks around the phrase) has on a
set of results.

⚫ Demonstrate, and ask pupils to use, some of the
more advanced search features, such as filtering by
date and reading level. Show pupils how they can
view the cached copy of a web page (for both Google
and Bing this is hidden under the green drop-down
next to the URL on the results page).

⚫ Read through the Digital Schoolhouse notes on a
simulation of how a search engine works, based on
Google engineer Doug Aberdeen’s presentation at
the 2012 CAS Conference (see Further Resources
below). Print off the resources and run this as an
activity with your class.

 Further resources

⚫ Doug Aberdeen’s simulation from the CAS
conference, available at: www.computingatschool.
org.uk/index.php?id=aberdeen.

⚫ Useful list of advanced search keywords in Bing,
available at: http://onlinehelp.microsoft.com/en-
us/bing/ff808421.aspx.

⚫ Short animated presentation ‘How Search Works’
by Matt Cutts, available at: www.youtube.com/
watch?v=BNHR6IQJGZs.

⚫ Peter Dickman’s lecture ‘How Google Search
Works’, available at: www.youtube.com/
watch?v=C8v7AM1o7uM.

⚫ Digital Schoolhouse simulation of how a
search engine works: http://community.
computingatschool.org.uk/files/3874/original.pdf.

⚫ Eli Pariser’s talk ‘Beware online “filter bubbles”’
(how individually focused our search results are),
available at: www.ted.com/talks/eli_pariser_
beware_online_filter_bubbles?language=en.

72

QuickStart Computing

How can you use
computers to work
with others?
There’s more to computing than computer science.
With the use of digital technology such as smartphones
and the internet, it’s hard to think of any sphere of
life which hasn’t been changed by the near ubiquitous
nature of communication technology.

The national curriculum seeks to ensure that all
pupils learn about some of the opportunities that
networks offer for communication and collaboration.

Young people are usually comfortable using a range
of digital technologies to communicate with one
another (although you should not presume that
they act safely and responsibly when doing so: see
Safe and responsible use. They are perhaps less
skilled in using technologies to work collaboratively
on shared projects.

Different technologies work with different-sized groups:

One-to-one
email
video calls
instant messaging

One-to-many
blogging
personal website
publishing on YouTube
podcasting
posting to social media

Many-to-one
searching the web
watching YouTube
browsing social media

Many-to-many
discussion forums
Wikipedia

We need to develop pupils’ understanding of these
technologies (and some critical discernment
about their use) rather than just their ability to
use any particular platform. The implementation
of communication technology will change, but
underlying principles are likely to remain the same.

Yes! Many schools are now using digital
communication and collaboration technologies as
part of their day-to-day work.

Again, yes! The internet can provide many opportunities
for pupils in one class to communicate with or work
collaboratively with pupils in another class.

There’s so much that can be gained through even
a simple, email based eTwinning project. Think of
the scope for exploring ‘contrasting localities’ in

Can pupils communicate
with other schools?

Can communication
technology be embedded
across the whole curriculum?

Communication
and collaboration

Communication and collaboration

geography, for practising other languages, or looking
at a period in history from a global perspective.

These days, it’s easy for a teacher to set up a class
blog, perhaps as open access so that a child’s work
can reach an audience, potentially, of close on three
billion others. Blogs are also a great way to share
what’s happening in your class with your pupils’
parents and with other teachers.

Blogs can be used as a basis for partnership
projects with another class or group of classes,
taking turns to respond to work that’s posted.
However, it’s really important that comments posted
to a class or school blog are moderated by a teacher
before they’re seen by pupils.

Blogging can be easily used to record and share
pupils’ work in computing. Even without blogging,
pupils could share their programming work through
community sites for tools such as Scratch and Kodu
(taking care that all involved observe the terms and
conditions that apply to these platforms).

The internet makes it easy for pupils to work
collaboratively online, just as they have always been
able to do in class.

Web-based platforms such as Office 365 mean that
pupils can work on files together, either by inviting
comment and review from others, or through real-
time collaboration. The efficiency with which joint
projects can be undertaken and reviewed can make
this a very exciting mode of work.

Teachers and pupils alike will be aware of the
collaborative nature of Wikipedia. This can provide
a good opportunity for pupils to become more
discerning in evaluating digital content, and indeed
to correct errors or add content to Wikipedia when
they can. The Simple English Wikipedia is far less
‘complete’ than the main edition, and so it’s practical
for primary classes to ‘adopt’ pages here, editing
or monitoring these for other users. Alternatively,

teachers can set up their own wiki for their class,
using one of a number of online tools.

Online collaborative working is a very important part
of software development. Pupils themselves can get
some experience in collaborative software development
through the re-mix feature built into platforms such as
Scratch, TouchDevelop and Kodu.

It’s important to establish an agreed set of rules
for any online activities. Pupils need to be aware
that terms and conditions do apply to them, even if
they are rarely written in accessible language. You
should brief pupils on what is expected of them. The
key stage 2 programme of study expects pupils to
recognise acceptable and unacceptable behaviour.

It’s helpful to have a set of guiding principles here:
pupils should behave online just as they would
offline. This would include:
⚫ not being deliberately hurtful
⚫ taking care of shared resources
⚫ being prepared to stand up for doing the right

thing, even if it’s unpopular
⚫ not talking to strangers
⚫ being honest.

Explain to pupils that most online systems automatically
log the activities that take place in them: someone (or
something) is watching what they do online!

Further resources

⚫ eTwinning: connect with classes across Europe,
available at: www.eTwinning.net.

⚫ 100 Word Challenge: carry out and share short
literacy projects, available at: http://100wc.net/.

⚫ Quadblogging®: collaborative blogging in groups
of four classes across the world, available at:
http://quadblogging.com/.

⚫ Simple English Wikipedia, available at: http://
simple.wikipedia.org/wiki/Main_Page.

⚫ Wikipedia: Five pillars: the guiding principles
behind Wikipedia, available at: http://en.wikipedia.
org/wiki/Wikipedia:Five_pillars.

⚫ Wikispaces Classroom: creating wikis in school,
available at: www.wikispaces.com/content/
classroom.

How can pupils work
collaboratively?

What audience can
pupils reach?

What ground rules
should we establish?

74

44

QuickStart Computing

Can we teach our
old ICT topics?
The answer to this is yes! There are few, if any, topics
from the old ICT curriculum that don’t appear in the
new computing curriculum.

At key stage 1 pupils should be taught to: ‘use
technology purposefully to create, organise, store,
manipulate and retrieve digital content’.

At key stage 2 pupils should be taught to: ‘select, use
and combine a variety of software (including internet
services) on a range of digital devices’. They design
and create digital content as well as programs and
systems, and they accomplish given goals, including
‘collecting, analysing, evaluating and presenting data
and information’.1

See pages 50–51 for more information on reusing old
ICT units when planning a computing scheme of work.

David Jonassen and others coined the term
‘meaningful learning’. They were thinking particularly
about learning activities that involved using
technology, but the principles can be applied more
broadly. Jonassen’s list2 was:
⚫ active: pupils should do something
⚫ constructive: pupils should make something
⚫ intentional: pupils should have some say in what

they do or how they accomplish something

⚫ authentic: link to pupils’ direct experience,
including that of school: look for connections with
other areas of the curriculum

⚫ cooperative: look for activities where pupils can
learn with and from one another.

For example, pupils could work together to create
and then analyse the results from an online survey of
other pupils about their views on the breadth of the
school’s curriculum, choosing for themselves how
they might present the results of their survey.

It’s important to find a balance between getting
things done in the time available and developing good
working habits for extended projects.

It’s probably best to mix a range of short activities
with more extended projects in which the processes of
planning, implementing, revising and evaluating are fully
explored. Working through the stages of a project in
detail is good experience for this sort of work elsewhere.

Look for ways to get pupils involved in managing
projects. This can include deciding what programs and
equipment they’ll need to use. The project management
skills involved in creative media work are very similar to
those required in software development.

The programmes of study are quite careful not to
specify particular digital media. Technology currently

Productivity
and creativity

How can we make ICT activities
more meaningful for pupils?

How should pupils go
about project work?

What digital tools should
pupils work with?

2 Jonassen, D. H. et al., Meaningful Learning with Technology (Upper
Saddle River NJ: Pearson, 2008).

1 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

45

Productivity and creativity

available in most schools can be used for work
across a very wide range of media including: text,
images, sound, animations, video and 3D. Ensure that
your pupils experience working across this full range.
A PowerPoint presentation is likely to include text
and images, and perhaps video, audio and animations.

Also aim to ensure that your pupils work on a variety
of devices and are able to draw on web-based
services, tablets, smartphones, digital cameras or
other systems rather than just using traditional
Windows PCs in their IT work.

Sir Ken Robinson defines creativity as ‘the process of
having original ideas that have value’3: creative work
should be original, and this should at least mean that
it’s a pupil’s own work, not something where they’ve
simply filled in a blank or copied something. Creative
work should also be of value: at the very least to the
pupils themselves, but also to a wider audience.

As well as originality and value, creative work also
implies that the pupil has made something. An emphasis
on creativity recognises how powerful the process of
making things for others is as a means to learning.

In the classroom, help pupils to become masters
of the software tools and digital devices they use,
helping them to develop confidence, competence and
independence. Then encourage them to use them,
playfully or experimentally, as a way of helping them
express their own insights and ideas.

The computing curriculum includes a requirement
for pupils to work with numerical data. This is an
important application of computer systems and
seems likely to become even more so in the future.

There’s much you can do to provide pupils with an
authentic experience of working with both small and
large datasets. Pupils can generate interesting sets
of data, or access large, open data repositories.

Online survey tools, such as Google Forms or
Excel Online, allow pupils to design and deploy
quick opinion polls or surveys, and then analyse,
evaluate and present the results. Choosing topics
of genuine interest to pupils, perhaps concerned

with aspects of school life, can make activities like
this much more engaging. Pupils should think about
privacy and ethical aspects of such surveys. Good
practice includes principles of informed consent and
anonymity; the latter is particularly important as
otherwise data protection legislation would apply
when processing personal data.

 Classroom activity ideas

⚫ Carry out activities that draw on automatically
generated data, perhaps using sensors (e.g. a
Scratch script to record the level of sound in
class; see Further resources).

⚫ Organise your pupils to analyse some big datasets
made publicly available on the internet. Help them
to use n-gram viewer to search for the occurrence
of words or phrases in the vast number of
books that Google have digitised and see how
this changes over time (see Further resources).
Analyse how search term popularity has changed
over time, e.g. look at the relative popularity of
searches for ‘Britain’s Got Talent’ and ‘The X
Factor’ over time in searches performed in the UK
using Google Trends (see below).

⚫ Discuss the ethical implications of data
processing (i.e. what others do with our data). Ask
pupils to think about the detailed profile which
internet, email or search engine providers build up
through analysing each user’s activity, as well as
to what uses this information might be put.

Further resources

 ⚫ ‘A picture is worth a thousand words: what we
learned from 5 million books’ lecture, available at:
www.youtube.com/watch?v=5l4cA8zSreQ; see also
n-gram viewer: https://books.google.com/ngrams.

⚫ Classroom sound monitor on Scratch, available at:
http://scratch.mit.edu/projects/20968943/.

 ⚫ Google forms (www.google.co.uk/forms/about) or
Excel Surveys (http://blogs.office.com/2012/11/16/
excel-surveys/) for creating online surveys.

 ⚫ Jonassen, D. H. et al., Meaningful Learning with
Technology (Upper Saddle River NJ: Pearson, 2008).

⚫ Monte Carlo Method, available at: http://
en.wikipedia.org/wiki/Monte_Carlo_method.

⚫ Robinson, K., Out of Our Minds – Learning to Be
Creative (Capstone, 2011).

⚫ Using Google searches to predict flu: www.
youtube.com/watch?v=uEt8NuqBvPQ; see also
Google Trends: www.google.com/trends/.

3 Robinson, K., Out of Our Minds – Learning to Be Creative (Capstone, 2011).

What can pupils do with data?

How can creativity be taught?

75

QuickStart Computing

Safe and
responsible use

Keeping children
safe

How can we keep
children safe online?
Schools have a responsibility to keep pupils safe. The
Byron Review,1 Ofsted and others have emphasised
that the best way to achieve this is to teach pupils
how to keep themselves safe. Think of pupils cycling
to school: the pupils are exposed to risks which could
otherwise be avoided, but these risks are balanced
by a range of benefits (independence, health,
environment, road congestion, etc.). We do all we can
to outweigh the risks by teaching pupils to cycle well
and safely.

The new computing curriculum goes beyond just
teaching e-safety, and states that key stage 2 pupils
should be taught to:

use technology safely, respectfully and
responsibly; recognise acceptable/unacceptable
behaviour; identify a range of ways to report
concerns about content and contact.2

It’s important to recognise that these requirements
are a whole school responsibility. They should be
taught across the curriculum and become part of
the life of the school – this isn’t just something for
computing lessons.

By moving from a risk mitigation approach to
a values-based approach that promotes the
responsible use of technology, we can help develop
the pupils’ sense of moral responsibility and the
‘grit’ necessary for pupils to stand up for doing the
right thing. Pupils will then be far better at coping
with the challenges of secondary education and

adolescence, and far less likely to fall prey to the
more sinister aspects of the internet and other
technologies.

In The Byron Review Professor Tanya Byron outlined
three broad categories of risk which children are
exposed to through their use of digital technology:
content, contact and conduct.

What are the risks?

1 Byron, T., Safer Children in a Digital World: The Report of the Byron
Review (London: DCSF, 2008).
2 National Curriculum in England, Computing Programmes of Study
(Department for Education, 2013).

Commercial Aggressive Sexual Values

Content
(child as
recipient)

Adverts
Spam
Sponsorship
Personal info

Violent/hateful
content

Pornographic
or unwelcome
sexual
content

Bias
Racist
Misleading info
or advice

Contact
(child as
participant)

Tracking
Harvesting
personal info

Being bullied,
harassed or
stalked

Meeting
strangers
Being
groomed

Self-harm
Unwelcome
persuasions

Conduct
(child as actor)

Illegal
downloading
Hacking
Gambling
Financial scams
Terrorism

Bullying or
harassing
another

Creating and
uploading
inappropriate
material

Providing
misleading info/
advice

Table taken from Safer Children in a Digital World: The Report
of the Byron Review, p.16 (www.education.gov.uk/publications/
eOrderingDownload/DCSF-00334-2008.pdf). Contains public sector
information licensed under the Open Government Licence v2.0: see
www.nationalarchives.gov.uk/doc/open-government-licence/version/2/.

Safe and responsible use

Content
Children are naturally curious, and as teachers we
hope to develop that curiosity – to establish a life-
long love of learning. The Web has provided almost
instant access to a wealth of information that pupils
can access to further their learning and satisfy their
curiosity.

Schools have effective filters that minimise exposure
to inappropriate material in school, but this does not
prevent pupils accessing such material outside of
school, including on tablets or smartphones.

Both Bing and Google have safe-search modes (which
can be locked in place) and these help prevent pupils
from accessing particularly inappropriate content. In
addition, a number of organisations have developed
search engines targeted at children (for example
www.swiggle.org.uk/), often through a combination
of safe-search and custom-search tools in Google
search.

Encourage parents to use the safe search filters on
their search engine, and to request filtered internet
access at home and on mobile devices, explaining
how to do this and why it is a good idea.

But, even with filters in place, children may still
encounter content that concerns them. Establish
a ‘no blame’ culture in school so they feel they can
alert you, or their parents, to such content. Many
schools teach children to close the laptop, switch
off the monitor or turn the tablet over if they
find content they know they shouldn’t see or that
concerns them; again it’s worth explaining this to
parents and suggesting they do the same at home.

Byron identified commercialisation as another risk
associated with exposing pupils to the internet. As
teachers, we must help pupils to become discerning
and critical about commercial aspects of the content
they come across. For example, teach them about
spam in email and how this can be filtered semi-
automatically, as well as asking them to think about
what sort of algorithms might be used in doing so.

Talk to pupils about advertising on the web and
how this can be avoided through the use of browser
plugins such as AdBlock, as well as the difference
between sponsored and other results from search
engines. It’s also important to help pupils become
aware of the difference between altruistically
created content such as Wikipedia and many blogs,
and content created with a perhaps hidden or

implicit commercial purpose, e.g. apparently free
online services that are sustained through using the
user’s data to help target advertising.

Contact
The new curriculum requires that pupils are taught
who they can turn to if they have concerns over
contact online. In most cases, pupils should talk to
their parents or their teachers about such contact:
if pupils report such concerns to you, this is likely to
be covered by your safeguarding policy, so make sure
you follow this carefully. Sometimes pupils might
be too embarrassed to turn to either you or their
parents, so it’s worth introducing them to ChildLine
and, in the case of key stage 2 pupils, CEOP (see
Further resources).

Traditionally e-safety work in schools has included
clear advice to children on not sharing personal
information online. The curriculum includes this at
key stage 1. Online privacy is an increasing matter
of concern and there are broader issues here
than ‘stranger danger’. Pupils should be aware of
their ‘digital footprint’, the data about them that
is created by deliberately sharing content and
through the automatic logging of all online activity.
Whilst such logs are kept securely, many people are
concerned about the uses to which such data could
be put.

 Classroom activity ideas

⚫ Challenge older pupils to consider how algorithms
can be designed to filter search results from a
search engine to make them safe for children.

⚫ Ask older pupils to think about the long-term
implications of the data trails they leave behind
them when they search the internet. Ask them
to discuss: ‘Who do you want to keep your data
private from?’ (From internet predators? From
future employers? From the providers of search,
internet and email services? From advertisers?
From the school network manager? From
government agencies?)

Conduct
The curriculum at key stage 1 requires that pupils
learn to use technology ‘respectfully’. At key stage
2 this is extended to ‘responsibly’, and pupils should
also learn to recognise acceptable and unacceptable
behaviour. Supporting children’s moral development
is a vital part of primary education, as well as a

77

statutory requirement for a school’s curriculum
and, as part of ‘spiritual, moral, social and cultural
development’, an element of all Ofsted inspections.

Lawrence Kohlberg’s stages of moral
development3 offers one model for thinking about
this:

1. Obedience and punishment orientation (How can I
avoid punishment?)

2. Self-interest orientation (What’s in it for me?)
3. Interpersonal accord and conformity (The good

boy/girl attitude)
4. Authority and social-order maintaining orientation

(Law and order morality)
5. Social contract orientation (Do unto others…)
6. Universal ethical principles (Principled conscience)

Under this model, we would hope to see pupils taking
increasing responsibility for their own moral and
ethical decisions and behaviour whilst at primary
school. If schools take moral education seriously,
many aspects of pupils’ inappropriate conduct
using technology can perhaps be avoided, or their
consequences reduced.

Cyber-bullying
Even in primary schools, cyber-bullying is a common
problem. Whilst this is more likely to happen outside
of school, it’s common for both bully and victim to
be members of the same class or school and the
cause and consequences may often be connected
to school. As with bullying in general, a clear zero
tolerance message is vital, together with a culture
in which this can be reported in the knowledge that
swift and effective action will follow. Alongside this,
it’s worth building up pupils’ resilience to off-hand,
unintentionally hurtful remarks from others and
some recognition that not every online disagreement
or critical comment constitutes bullying.

Copyright
There are generous exemptions from much copyright
legislation for clearly specified educational use, but
it’s still important to teach and show best practice in
the use of copyright material. This includes children
(and teachers!) properly acknowledging the source of
content and respecting any associated licence terms.

Creative Commons (see Further resources) provide
a range of licences that allow those who create work
to license it for re-use under a range of different
conditions. You can teach pupils about this approach to
sharing online and show them how they can search for,
acknowledge and re-use Creative Commons licensed

content in their own work. Both Google and Bing image
search allow results to be filtered to show just images
that have been licensed in this way.

Pupils own the copyright in their own work including
the work they produce in school. As teachers, we
should respect this by seeking permission from
pupils and their parents before publishing pupils’
work online. Asking parents to license this use of
their children’s work might seem over the top, but
it’s important that pupils learn about their rights as
well as their responsibilities.

Terms and conditions
It’s important that pupils and teachers respect the
terms and conditions of any websites or other online
services that they use. The terms and conditions of
most online services run to many pages, but when
signing up for new services, or asking pupils to do so,
it’s well worth checking through the sections on any
age-restrictions as well as those on copyright and
data privacy. US-based companies are required to
abide by American COPPA (Children’s Online Privacy
Protection Act) legislation, which prevents their
storing personal data on under 13s without parental
consent. Thus, many US-based internet services
prohibit under 13s from using the service. Primary
school pupils using these services would be doing so
without the operators’ permission, which might be
considered in breach of the UK Computer Misuse Act.
Some services, including Office 365 and Google Apps
for Education, allow schools to create accounts on
behalf of children. Other websites, such as Scratch,
allow teachers to create multiple accounts in their
own name and share these with pupils.

Passwords
As more and more aspects of pupils’ learning and life
are mediated through online systems, it’s important
that they learn to protect their own online identity
and respect the online identity of others. The sooner
pupils can memorise and type in their own password
(even a simple, short one) the better. Later on,
encourage pupils to use long passwords that can’t
easily be guessed (e.g. CorrectBatteryHorseStaple),
to use different passwords for different sites
or services and to change passwords regularly.
Discourage pupils from sharing passwords with one
another (as this is usually their only way to prove
who they are in any online system) or with their
parents; many difficulties could arise through one
parent impersonating their son or daughter in an
otherwise secure ‘walled garden’ environment such
as a school VLE or learning platform.

3 Kohlberg, L., Essays on Moral Development: Vol. 2, The Psychology of
Moral Development (Harper & Row, 1984).

78

Safe and responsible use

Time to turn off
Finally, discuss with your pupils the opportunity
cost associated with screen time. Time spent using
a computer is time not spent doing other things,
such as reading a (paper-based) book, learning a
musical instrument, playing in a team and socialising
face-to-face with family and friends. Whilst digital
technology is seen by many as transformative of so
many aspects of learning and life, many would count
it a great shame if it came to dominate childhood to
a greater extent than it already has. Helping children
to become more discerning users of technology,
knowing when it would be useful, and when it might
be more of a distraction, is perhaps also one of our
responsibilities as teachers.

 Further resources

⚫ Byron, T., Safer Children in a Digital World: The
Report of the Byron Review (DCFS, 2008), available
at: http://webarchive.nationalarchives.gov.
uk/20130401151715/http://www.education.
gov.uk/publications/eOrderingDownload/DCSF-
00334-2008.pdf.

⚫ Childnet’s SMART rules: www.kidsmart.org.uk/
beingsmart/.

⚫ Creative Commons, for information and
free licences to use, available at: http://
creativecommons.org/.

⚫ ‘Digital Literacy & Citizenship from the South
West Grid for Learning’, teaching resources,
available at: www.digital-literacy.org.uk/Home.
aspx.

⚫ Ofsted: ‘Inspecting safeguarding in maintained
schools and academies – Briefing for section 5
inspections’, available at: www.ofsted.gov.uk/
resources/inspecting-safeguarding-maintained-
schools-and-academies-briefing-for-section-5-
inspections.

⚫ Thinkuknow.co.uk (CEOP), information and
teaching resources for keeping children safe
online, available at: www.thinkuknow.co.uk/
Teachers/.

⚫ UK Safer Internet Centre, for information
and teaching resources, available at: www.
saferinternet.org.uk.

⚫ UNCRC (United Nations Convention on the Rights
of the Child), for information and training on
children’s rights, available at: www.ohchr.org/en/
professionalinterest/pages/crc.aspx.

79

QuickStart Computing

What makes a good
computing lesson?
There’s a wealth of learning theory, academic
research and professional practice, including
Ofsted’s expectations, that we can draw on to
help address this crucial question. Good practice
in computing is unlikely to be different from good
practice across the primary curriculum. We can draw
on what’s effective in other subject areas which have
much in common with computing: science, design and
technology, art and design and music teaching.

Educational theory can be mined for insights into
how a new subject like computing might be taught.
The pragmatic teacher is likely to draw on a blend of
these approaches.
⚫ Experimenting: Provide pupils with a chance to

explore and tinker with new software or hardware
when they first encounter it, so they can figure
out their own mental model for how it works. This
can be particularly effective with younger pupils.

⚫ Making: A lot can be learnt through the process
of making things to show to or share with others.
This might be computer code, but it might also
be PowerPoint presentations, web pages, edited
video, digital photographs, etc.

⚫ Discussion: Make the most of pupils’ different
insights, experiences and backgrounds by allowing
them to share their ideas with one another and
with others. Paired programming activities in

class and online discussion forums are just two
ways to facilitate this.

⚫ Connecting: Learning from others need not be
limited to the classroom: encourage pupils to
explore others’ solutions to problems on the Kodu
or Scratch community sites, for example, or to
search online for solutions to problems.

⚫ Direct instruction: For some ideas in computing,
the traditional, direct instruction approach can
work well. Complex ideas such as variables, how
the internet works or how search engines operate
could be learnt using discovery-based approaches,
but direct teaching is likely to be more effective.

 ⚫ Practise: Don’t assume that once pupils have
demonstrated they can do something or
understand an idea that their learning is secure.
Provide opportunities for them to practise applying
their skills, knowledge and understanding.

Ofsted’s expectations of good or outstanding
lessons are the same irrespective of subject, and are
outlined in the current edition of the School inspection
handbook (Ofsted 2014).

The School inspection handbook makes clear the
importance of inclusion, as discussed in relation to
planning for computing (page 51). Thus, for teaching
to be considered outstanding:

almost all pupils currently on roll in the school,
including disabled pupils, those who have special
educational needs, disadvantaged pupils and the
most able, are making sustained progress that leads
to outstanding achievement.1

In his presentation on inspecting computing, David
Brown made some suggestions for what good or
outstanding teaching in computing might look like.

What approaches are useful
for teaching computing?

Teaching Approaches for
teaching computing

What does Ofsted expect?

Teaching

He recommended that:

- it is informed by excellent subject knowledge and
understanding of continuing developments in
teaching and learning in computing

- it is rooted in the development of pupils’
understanding of important concepts and
progression within the lesson and over time; it
enables pupils to make connections between
individual topics and to see the ‘big picture’

- lessons address pupils’ misconceptions very
effectively; teachers’ responses to pupils’
questions are accurate and highly effective in
stimulating further thought

- teachers use a very wide range of innovative and
imaginative resources and teaching strategies
to stimulate pupils’ active participation in their
learning and secure good or better progress
across all aspects of the subject.2

When commenting on pupils’ achievement in
computing, David Brown suggested that this would
be good or outstanding if:

- pupils demonstrate excellent understanding of
important concepts in all three strands of the
computing curriculum and are able to make
connections within the subject because they have
highly developed transferable knowledge, skills and
understanding

- pupils show high levels of originality, imagination,
creativity and innovation in their understanding
and application of skills in computing

but would be regarded as inadequate if:
- pupils rarely demonstrate creativity or originality

in their use of computing but seem confined to
following instructions.3

Look for ways in which pupils can take their learning
further. Here are just a few examples.
⚫ Code Club (see Further resources) run after-school

coding clubs in around 2,000 primary schools and
make their activities available for others to use
as they wish. Typical clubs are run by volunteers,
although teacher involvement is also needed. Code
Club provide an introductory Scratch programming
course and a more advanced Scratch coding course,

as well as courses that introduce the basics of
HTML coding for web-development and Python
programming.

⚫ Many schools have found it helpful to institute
a system of pupil ‘digital leaders’, who can help
teachers and other pupils with some limited tech
support, as well as being the first to try out new
software and hardware and even advising on the
school’s technology policies. Typically, schools
run an open application process for these roles,
inviting potential digital leaders to set out in
writing why they would be well suited to the role.

⚫ Activities such as CoderDojo and Young Rewired
State (see Further resources) rely on parental
support for primary aged pupils and involvement
from those working in the software industry.

⚫ Some primary pupils might, with parental permission,
become active participants in online communities,
such as those around Kodu, Scratch or even YouTube
and blogging. Others might pursue more advanced
coding skills, perhaps using online interactive
tutorials such as those offered by Codecademy (see
Further resources), or teaching themselves how to
develop for Windows Phone, Android or iOS.

Try to find ways in which this sort of advanced
learning beyond school can be brought in to class and
shared with other pupils.

Further resources

⚫ David Brown (Ofsted) ‘Inspecting
computing’ (Computing Conference) slides.

⚫ O'Kane, l., 'Computing Pedagogy' (2019), available
at: www.icompute-uk.com/news/computing-
pedagogy

⚫ O'Kane, l., 'Achieving Computing Mastery' (2019),
available at: www.icompute-uk.com/news/
computing-mastery-for-primary-schools

⚫ Cousin, G., ‘An introduction to threshold
concepts’ (2006), available at: www.et.kent.edu/
fpdc-db/files/DD%2002-threshold.pdf.

⚫ Hattie, J., Visible Learning for Teaching:
Maximising Impact on Learning (Routledge,
2009).

⚫ Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas (Basic Books, 1980).

⚫ The Sutton Trust Education Endowment
Foundation Teaching and Learning Toolkit, for
information
on research and guidance on using resources
for disadvantaged pupils, available at: http://
educationendowmentfoundation.org.uk/toolkit/.

⚫ Young Rewired State community of young
digital makers, available at: www.yrs.io/.

What about beyond
the classroom?

81

QuickStart Computing

How can we collect
evidence of learning?
When Ofsted reported on ICT in schools, assessment
came in for particular criticism. Assessing computing
can provide some particular challenges.
• It’s too easy to focus on the outcomes of a task at

the expense of assessing the learning that takes
place in the process.

• It’s too easy to focus on assessing pupils’ skills in
using particular software instead of assessing
their knowledge and understanding.

• If pupils have worked with a partner or in a group
to complete a project, how can you assess each
individual’s learning?

You can do much to meet these challenges and develop
robust approaches to assessment, so that you can form
a judgement about what individual pupils can do, know
and understand, as well as helping pupils themselves
reflect on how they’ve applied computational thinking.

Blogs and Screencasts for showcasing,
reflection and feedback
Probably, the most effective thing you could do is
to start a class blog. Ask pupils to use this to upload
the outcomes of their work and document the
computational thinking processes they worked
through, focusing on any challenges they overcame.

Blogs provide a way for pupils to get feedback
through the comments section. Invite pupils to
respond to any questions raised. You can create a
tagging system so you and your pupils can use their
blog to track progress. A blog begun in Year 1 and
continued up to Year 6 would provide rich evidence of
both progress and attainment.

Other approaches
Naace suggest using an interview at the end of a
project. A pupil might explain the computational
thinking they used in solving a problem, but could
also reflect on what and how they have learnt.

There’s a place for formal testing in computing. In
programming work, code tracing and debugging
challenges are useful ways of assessing both specific
knowledge of a programming language as well as
logical reasoning and other problem-solving skills.

Evidence for pupils’ computational thinking will
be found in how they approach projects, but well-
designed questions might provide one way of
assessing this more directly.

iCompute's Computing Assessment Toolkit
is used for both planning and monitoring progression
in computing. It provides detailed treatment of
progression across the three strands of the National
Curriculum.

Comprehensive end of unit assessment guidance is
provided with each unit plan the results of which
teachers input into the interactive pupil progress
trackers.

The pupil progress trackers assign each pupil a
colourway allowing teachers to identify any gaps and
plan for next steps.

Assessment Assessing and
tracking progress

How can we track progress?

Assessment

The old national curriculum levels have been removed
and not replaced. The statutory attainment target is
clear:

By the end of each key stage, pupils are expected to
know, apply and understand the matters, skills and
processes specified in the relevant programme of
study.6

iCompute Tests & Tasks support teacher assessment
with end of unit online diagnostic tests and open-
ended project tasks with teacher mark scheme. The
assessment data feeds into pupil progress trackers.

The advantage of a method like this is that it shows
pupils, parents and teachers exactly what has been
achieved and what aspects of the curriculum remain
targets for subsequent work.

Assessment Strategies
Evidence – Blogging and using e-Portfolios such as
SeeSaw or maintain individual folders on the school
network for each pupil to contain digital work.

Teacher Feedback – Face-to-face or using digital
‘marking’ strategies such as adding text comments in
digital work or adding audio of your comments.

Self/Peer – Blogging, Vlogging or Video
Screencasting provides excellent opportunities for
pupils to reflect on work.

Diagnostic Testing – Creative online interactive
quizzes provide engaging opportunities to assess
pupil understanding and bring a gamification aspect
to assessment.

Assessment Projects – Using end-of-unit open-
ended project tasks allow pupils to demonstrate
learning.

Progress Tracking – Understanding where pupils are
and planning next steps to meet age-related
expectations

Even just one Scratch script provides evidence of
attainment for the key stage 2 programme of study.

From the Scratch scripts themselves, we have
evidence of:

⚫ write programs that accomplish specific goals
⚫ use sequence in programs
⚫ work with various forms of input (keyboard and

mouse in this case)
⚫ design programs that accomplish specific goals
⚫ design and create programs
⚫ use repetition in programs (forever loop, two

different repeat until loops)

⚫ simulate physical systems
⚫ use selection in programs (if … then … else)
⚫ work with variables (score).

If pupils had also explained how they’d solved the
problems, then you might also have evidence of a
number of the ‘logical reasoning’ statements.

SEN
Pupils with special educational needs working below
the level of the programme of study for their key stage
should be assessed using the P-scale statements, as in
the past. iCompute has pupil progress trackers for the
Early Years adapted from P-Scales.

How can we assess attainment?

Further resources

⚫ O'Kane, l., 'How to Assess Primary
Computing' (2019), available at: www.icompute-
uk.com/news/computing-assessment

⚫ O'Kane, l., 'Primary Computing
Assessment' (2019), available at: www.icompute-
uk.com/news/primary-computing-assessment

⚫ O'Kane, l., 'Computing Tests & Tasks' (2019),
available at: www.icompute-uk.com/news/
computing-tests-and-tasks

83

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

